包含python对象(例如列表)的Deepcopy pandas DataFrame

时间:2019-03-06 20:11:09

标签: python python-3.x pandas memory-management

需要帮助了解变量分配,指针等...

以下是可重复的。

import pandas as pd

df = pd.DataFrame({
    'listData': [
        ['c', 'f', 'd', 'a', 'e', 'b'], 
        [5, 2, 1, 4, 3]
    ]})

df['listDataSort'] = df['listData']

给予:

             listData        listDataSort
0  [c, f, d, a, e, b]  [c, f, d, a, e, b]
1     [5, 2, 1, 4, 3]     [5, 2, 1, 4, 3]

如果我只想对listDataSort列中的列表进行排序,则可以尝试:

df['listDataSort'].apply(lambda l: l.sort())
df

但是,它可以对两列中的列表进行就地排序。

             listData        listDataSort
0  [a, b, c, d, e, f]  [a, b, c, d, e, f]
1     [1, 2, 3, 4, 5]     [1, 2, 3, 4, 5]

我可以通过以下方式解决此问题:

df = pd.DataFrame({
    'listData': [
        ['c', 'f', 'd', 'a', 'e', 'b'], 
        [5, 2, 1, 4, 3]
    ]})

df['listDataSort'] = df['listData'].apply(sorted)

给予:

             listData        listDataSort
0  [c, f, d, a, e, b]  [a, b, c, d, e, f]
1     [5, 2, 1, 4, 3]     [1, 2, 3, 4, 5]

将df分配给另一个变量,例如df2仍将所有内容更改回原始源列表。此外,如何基于现有数据框创建新数据框,以便可以对新数据框进行更改而无需对现有数据框进行相同更改?

df = pd.DataFrame({
    'listData': [
        ['c', 'f', 'd', 'a', 'e', 'b'], 
        [5, 2, 1, 4, 3]
    ]})

df2 = df
print('\ndf\n', df)
print('\ndf2\n', df2)

df2['listDataSort'] = df2['listData']
print('\ndf\n', df)
print('\ndf2\n', df2)

df2['listDataSort'].apply(lambda l: l.sort())
print('\ndf\n', df)
print('\ndf2\n', df2)

打印:

df
             listData
0  [c, f, d, a, e, b]
1     [5, 2, 1, 4, 3]

df2
             listData
0  [c, f, d, a, e, b]
1     [5, 2, 1, 4, 3]

df
             listData        listDataSort
0  [c, f, d, a, e, b]  [c, f, d, a, e, b]
1     [5, 2, 1, 4, 3]     [5, 2, 1, 4, 3]

df2
             listData        listDataSort
0  [c, f, d, a, e, b]  [c, f, d, a, e, b]
1     [5, 2, 1, 4, 3]     [5, 2, 1, 4, 3]

df
             listData        listDataSort
0  [a, b, c, d, e, f]  [a, b, c, d, e, f]
1     [1, 2, 3, 4, 5]     [1, 2, 3, 4, 5]

df2
             listData        listDataSort
0  [a, b, c, d, e, f]  [a, b, c, d, e, f]
1     [1, 2, 3, 4, 5]     [1, 2, 3, 4, 5]

还:

df = pd.DataFrame({
    'listData': [
        ['c', 'f', 'd', 'a', 'e', 'b'], 
        [5, 2, 1, 4, 3]
    ]})
print('\ndf\n', df)

df3 = df
df3['listDataSort'] = df3['listData'].apply(sorted)
print('\ndf\n', df)
print('\ndf3\n', df3)

打印:

df
             listData
0  [c, f, d, a, e, b]
1     [5, 2, 1, 4, 3]

df
             listData        listDataSort
0  [c, f, d, a, e, b]  [a, b, c, d, e, f]
1     [5, 2, 1, 4, 3]     [1, 2, 3, 4, 5]

df3
             listData        listDataSort
0  [c, f, d, a, e, b]  [a, b, c, d, e, f]
1     [5, 2, 1, 4, 3]     [1, 2, 3, 4, 5]

1 个答案:

答案 0 :(得分:3)

运行时

df['listDataSort'] = df['listData']

您要做的就是将列表的引用复制到新列中。这意味着仅执行浅表复制,并且两列都引用相同的列表。因此,对一列的任何更改都可能会影响另一列。

您可以对sorted使用列表推导,以返回数据的副本。这应该是您最简单的选择。

df['listDataSort'] = [sorted(x) for x in df['listDataSort']]
df

             listData        listDataSort
0  [c, f, d, a, e, b]  [a, b, c, d, e, f]
1     [5, 2, 1, 4, 3]     [1, 2, 3, 4, 5]

现在,当涉及到复制整个DataFrame的问题时,事情要复杂一些。我会推荐deepcopy

import copy
df2 = df.apply(copy.deepcopy)