填写data.table缺少日期的最快方法(续)

时间:2019-03-06 16:42:31

标签: r date data.table

我正在寻找一种高效,快速的方法来将丢失的数据填充到缺少日期的表中。

library(data.table)
dt <- as.data.table(read.csv(textConnection('"date","gr1","gr2","x"
                                            "2017-01-01","A","a",1
                                            "2017-02-01","A","b",2
                                            "2017-02-01","B","a",4
                                            "2017-04-01","B","a",5
                                            "2017-05-01","A","b",3')))
dt[,date := as.Date(date)] 

假设该表包含xdategr1组的gr2的所有信息。我想填写缺失的日期,并通过用xgr1重复gr2的最后一个已知值来扩展此表。我的方法如下:

# define the period to expand
date_min <- as.Date('2017-01-01')
date_max <- as.Date('2017-06-01')
dates <- setDT(list(ddate = seq.Date(date_min, date_max,by = 'month')))

# cast the data
dt.c <- dcast(dt, date~gr1+gr2, value.var = "x")
# fill missing dates
dt.c <- dt.c[dates, roll=Inf]

# melt the data to return to original table format
dt.m <- melt(dt.c, id.vars = "date", value.name = "x")

# split column - the slowest part of my code
dt.m[,c("gr1","gr2") := tstrsplit(variable,'_')][,variable:=NULL]

# remove unnecessary NAs
dt.m <- dt.m[complete.cases(dt.m[,x])][,.(date,gr1,gr2,x)]
setkey(dt.m)

这是我希望看到的输出:

> dt.m
         date gr1 gr2 x
1: 2017-01-01   A   a 1
2: 2017-02-01   A   b 2
3: 2017-02-01   B   a 4
4: 2017-03-01   A   b 2
5: 2017-03-01   B   a 4
6: 2017-04-01   B   a 5
7: 2017-05-01   A   b 3
8: 2017-06-01   A   b 3

现在的问题是,tstrsplit在具有许多组的大型数据集上非常慢。

This方法与我需要的方法非常接近,但是如果我遵循该方法,我将无法获得所需的输出,因为它不仅可以填充缺少的日期,而且还可以填充NA。这是我对示例的修改:

# the desired dates by group
date_min <- as.Date('2017-01-01')
date_max <- as.Date('2017-06-01')
indx <- dt[,.(date=seq(date_min,date_max,"months")),.(gr1,gr2)]

# key the tables and join them using a rolling join
setkey(dt,gr1,gr2,date)
setkey(indx,gr1,gr2,date)
dt0 <- dt[indx,roll=TRUE][,.(date,gr1,gr2,x)]
setkey(dt0,date)

这不是我希望看到的输出:

> dt0
          date gr1 gr2  x
 1: 2017-01-01   A   a  1
 2: 2017-01-01   A   b NA
 3: 2017-01-01   B   a NA
 4: 2017-02-01   A   a  1
 5: 2017-02-01   A   b  2
 6: 2017-02-01   B   a  4
 7: 2017-03-01   A   a  1
 8: 2017-03-01   A   b  2
 9: 2017-03-01   B   a  4
10: 2017-04-01   A   a  1
11: 2017-04-01   A   b  2
12: 2017-04-01   B   a  5
13: 2017-05-01   A   a  1
14: 2017-05-01   A   b  3
15: 2017-05-01   B   a  5
16: 2017-06-01   A   a  1
17: 2017-06-01   A   b  3
18: 2017-06-01   B   a  5

在(dt.m)上方重现输出的最佳(最快)方法是什么?

4 个答案:

答案 0 :(得分:3)

我将IDate和一个整数计数器用于日期序列:

dt[, date := as.IDate(date)]
dates = seq(as.IDate("2017-01-01"), as.IDate("2017-06-01"), by="month")
dDT = data.table(date = dates)[, dseq := .I][]

dt[dDT, on=.(date), dseq := i.dseq]

然后枚举所有所需的组合(gr1,gr2,dseq)并进行几次更新联接:

cDT = CJ(dseq = dDT$dseq, gr1 = unique(dt$gr1), gr2 = unique(dt$gr2))

cDT[, x := dt[cDT, on=.(gr1, gr2, dseq), x.x]]
cDT[is.na(x), x := dt[copy(.SD), on=.(gr1, gr2, dseq), roll=1L, x.x]]

res = cDT[!is.na(x)]
res[dDT, on=.(dseq), date := i.date]

    dseq gr1 gr2 x       date
 1:    1   A   a 1 2017-01-01
 2:    2   A   a 1 2017-02-01
 3:    2   A   b 2 2017-02-01
 4:    2   B   a 4 2017-02-01
 5:    3   A   b 2 2017-03-01
 6:    3   B   a 4 2017-03-01
 7:    4   B   a 5 2017-04-01
 8:    5   A   b 3 2017-05-01
 9:    5   B   a 5 2017-05-01
10:    6   A   b 3 2017-06-01

与OP预期的相比,这里还有两行

res[!dt.m, on=.(date, gr1, gr2)]

   dseq gr1 gr2 x       date
1:    2   A   a 1 2017-02-01
2:    5   B   a 5 2017-05-01

因为我要单独处理每个丢失的gr1 x gr2值,而不是填充它,因为日期根本不在dt中(如在OP中)。要应用该规则...

drop_rows = res[!dt, on=.(gr1,gr2,date)][date %in% dt$date, .(gr1,gr2,date)]
res[!drop_rows, on=names(drop_rows)]

(由于likely bug,需要copy(.SD)。)

答案 1 :(得分:2)

在滚动连接,一个“普通”连接和一些列切换上,aaa完成:)

temp <- dates[, near.date := dt[dates, x.date, on = .(date=ddate), roll = TRUE, mult = "first"]][]
dt[temp, on = .(date = near.date)][, date := ddate][,ddate := NULL][]

#          date gr1 gr2 x
# 1: 2017-01-01   A   a 1
# 2: 2017-02-01   A   b 2
# 3: 2017-02-01   B   a 4
# 4: 2017-03-01   A   b 2
# 5: 2017-03-01   B   a 4
# 6: 2017-04-01   B   a 5
# 7: 2017-05-01   A   b 3
# 8: 2017-06-01   A   b 3

您当然可以通过将第一行集成到最后一行来使其成为一个单行。

答案 2 :(得分:0)

这与另一个问题有点类似,尽管要注意一个重复项。该方法类似,但是具有data.tables和多个列。另请参阅:Fill in missing date and fill with the data above

在这里,尚不清楚您是否要填写gr2和x列或gr2在做什么。我假设您正在寻找以1个月为增量的日期来填补空白。另外,由于输入数据的最大月份为5(五月),因此示例所需的输出将一直持续到6(六月),因此,如果目标是在输入日期之间进行填充,则不清楚如何达到六月,但是如果有外部最大值,可以设置而不是输入日期的最大值

library(data.table)
library(tidyr)
dt <- as.data.table(read.csv(textConnection('"date","gr1","gr2","x"
                                            "2017-01-01","A","a",1
                                            "2017-02-01","A","b",2
                                            "2017-02-01","B","a",4
                                            "2017-04-01","B","a",5
                                            "2017-05-01","A","b",3')))
dt[,date := as.Date(date)] 
setkeyv(dt,"date")

all_date_groups <- dt[,list(date=seq.Date(from=min(.SD$date),to=max(.SD$date),by="1 month")),by="gr1"]
setkeyv(all_date_groups,"date")

all_dates_dt <- dt[all_date_groups,on=c("date","gr1")]
setorderv(all_dates_dt,c("gr1","date"))

all_dates_dt <- fill(all_dates_dt,c("gr2","x"))
setorderv(all_dates_dt,c("date","gr1"))
all_dates_dt

结果:

> all_dates_dt
         date gr1 gr2 x
1: 2017-01-01   A   a 1
2: 2017-02-01   A   b 2
3: 2017-02-01   B   a 4
4: 2017-03-01   A   b 2
5: 2017-03-01   B   a 4
6: 2017-04-01   A   b 2
7: 2017-04-01   B   a 5
8: 2017-05-01   A   b 3

答案 3 :(得分:0)

dt对于date的每个组合,所有唯一gr*都应具有NA,但不会显示。因此,我们使用CJ和一个联接用x的NA填充那些缺少的日期。

然后,为所有必需的ddates扩展数据集。

最后,过滤掉x为NA的行,并按日期排序以使输出具有与原始dt相同的特征。

dt[, g := .GRP, .(gr1, gr2)][
    CJ(date=date, g=g, unique=T), on=.(date, g)][, 
        .SD[.(date=ddate), on=.(date), roll=Inf], .(g)][
            !is.na(x)][order(date)]

输出:

   g       date gr1 gr2 x
1: 1 2017-01-01   A   a 1
2: 2 2017-02-01   A   b 2
3: 3 2017-02-01   B   a 4
4: 2 2017-03-01   A   b 2
5: 3 2017-03-01   B   a 4
6: 3 2017-04-01   B   a 5
7: 2 2017-05-01   A   b 3
8: 2 2017-06-01   A   b 3

数据:

library(data.table)
dt <- fread('date,gr1,gr2,x
    2017-01-01,A,a,1
    2017-02-01,A,b,2
    2017-02-01,B,a,4
    2017-04-01,B,a,5
    2017-05-01,A,b,3')
dt[,date := as.Date(date)] 

date_min <- as.Date('2017-01-01')
date_max <- as.Date('2017-06-01')
ddate = seq.Date(date_min, date_max,by = 'month')

请尝试您的实际数据集。