我正在尝试使用此功能,以便从数据帧中提取AdjClose
值。
def get_sell_price(data):
buy_date = get_buy_date(data)
sell_date = get_sell_date(buy_date)
l=[]
for i in range(0,len(buy_date)):
sell_price = data[(data.Date == sell_date[i])].AdjClose
l.append(sell_price)
return l
这将返回数据:
[8180 110.459999
Name: AdjClose, dtype: float64, 17052 655.679993
Name: AdjClose, dtype: float64, 17452 968.099976
Name: AdjClose, dtype: float64, 17453 970.280029
Name: AdjClose, dtype: float64, 17454 965.719971
Name: AdjClose, dtype: float64, 17455 955.25
Name: AdjClose, dtype: float64, 17458 944.159973
Name: AdjClose, dtype: float64, 17462 950.690002
Name: AdjClose, dtype: float64, 17470 914.619995
Name: AdjClose, dtype: float64, 17497 951.640015
Name: AdjClose, dtype: float64, 17536 977.070007
Name: AdjClose, dtype: float64, 17537 966.580017
Name: AdjClose, dtype: float64, 17538 964.0
Name: AdjClose, dtype: float64, 18180 1335.209961
Name: AdjClose, dtype: float64, 18181 1313.040039
Name: AdjClose, dtype: float64, 18182 1285.550049
Name: AdjClose, dtype: float64, 21116 1514.400024
Name: AdjClose, dtype: float64, 21424 1300.680054
Name: AdjClose, dtype: float64, 22006 1178.099976
Name: AdjClose, dtype: float64, 22016 1196.47998
Name: AdjClose, dtype: float64, 22017 1197.300049
Name: AdjClose, dtype: float64, 22018 1210.650024
Name: AdjClose, dtype: float64, 22537 1209.109985
Name: AdjClose, dtype: float64, 25106 2914.0
Name: AdjClose, dtype: float64, 25113 2901.610107
Name: AdjClose, dtype: float64, 25114 2885.570068
Name: AdjClose, dtype: float64, 25116 2885.570068
Name: AdjClose, dtype: float64, 25117 2884.429932
Name: AdjClose, dtype: float64, 25118 2880.340088
Name: AdjClose, dtype: float64, 25119 2785.679932
Name: AdjClose, dtype: float64, 25122 2767.129883
Name: AdjClose, dtype: float64, 25129 2767.780029
Name: AdjClose, dtype: float64, 25143 2723.060059
Name: AdjClose, dtype: float64, 25144 2723.060059
Name: AdjClose, dtype: float64, 25157 2736.27002
Name: AdjClose, dtype: float64, 25158 2736.27002
Name: AdjClose, dtype: float64, 25169 2737.800049
Name: AdjClose, dtype: float64, 25219 2670.709961
Name: AdjClose, dtype: float64, 25240 2707.879883
Name: AdjClose, dtype: float64, Series([], Name: AdjClose, dtype: float64), Series([], Name: AdjClose, dtype: float64)]
我最好更改以下一行
sell_price = data[(data.Date == sell_date[i])].AdjClose
到
sell_price = data[(data.Date == sell_date[i])].AdjClose.values[0]
所以我只会得到没有附加说明的值列表。
但是,列表中的最后2个项目为空,因此当它尝试提取值时,会导致错误。这是因为数据帧中的sell_date
中的2个在2020年,因此它没有数据要返回,从而导致索引错误。
我尝试过滤sell_date
<2019-2-28,因为那是我拥有的数据量。但这不起作用,因为整个表需要有41行。
有什么办法可以使用
在该函数中返回值为0的值?sell_price = data[(data.Date == sell_date[i])].AdjClose.values[0]
感谢您的经验和见解!
答案 0 :(得分:1)
如果存在第一个值,可以将next
与iter
一起使用,否则返回默认值(此处为NaN
)。
对于带有过滤器的选择列,最好使用DataFrame.loc
:
sell_price = next(iter(data.loc[(data.Date == sell_date[i]), 'AdjClose']), np.nan)