有没有一种方法可以在plt.scatter()的输出中获取单个元素的边界框?我可以获得偏移量(即x和y坐标-因为我要用它们来作图,所以必须从这里开始)和尺寸,但是尺寸不是以数据单位为单位,因此,即使是从面积到半径的顽强转换也可以得到尺寸的bbox无法使用...
有什么好方法吗?
tips = sns.load_dataset('tips')[:20]
f, ax = plt.subplots()
sc = ax.scatter(tips["total_bill"], y=tips["tip"], s=(tips["size"]*3)**2)
plt.show()
sc.properties()['offsets']
array([[ 16.99, 1.01],
[ 10.34, 1.66],
[ 21.01, 3.5 ],
[ 23.68, 3.31],
[ 24.59, 3.61],
[ 25.29, 4.71],
[ 8.77, 2. ],
[ 26.88, 3.12],
[ 15.04, 1.96],
[ 14.78, 3.23],
[ 10.27, 1.71],
[ 35.26, 5. ],
[ 15.42, 1.57],
[ 18.43, 3. ],
[ 14.83, 3.02],
[ 21.58, 3.92],
[ 10.33, 1.67],
[ 16.29, 3.71],
[ 16.97, 3.5 ],
[ 20.65, 3.35]])
sc.get_sizes()
array([ 36, 81, 81, 36, 144, 144, 36, 144, 36, 36, 36, 144, 36,
144, 36, 36, 81, 81, 81, 81])
答案 0 :(得分:3)
就一般而言,这远非简单。 PathCollection允许进行不同的转换以及偏移量转换。它还可能具有一个或多个路径和大小。
幸运的是,有一个内置函数matplotlib.path.get_path_collection_extents
,它提供了PathCollection
的边界框。我们可以通过提供每个单个路径的一个项目列表并遍历所有路径,来代替每个成员的作用范围。
由于边界框以像素为单位,因此需要在最后转换回数据坐标。
下面是完成所有操作的完整功能。首先需要绘制图形,以便设置不同的变换。
import numpy as np; np.random.seed(432)
import matplotlib.pyplot as plt
from matplotlib.path import get_path_collection_extents
def getbb(sc, ax):
""" Function to return a list of bounding boxes in data coordinates
for a scatter plot """
ax.figure.canvas.draw() # need to draw before the transforms are set.
transform = sc.get_transform()
transOffset = sc.get_offset_transform()
offsets = sc._offsets
paths = sc.get_paths()
transforms = sc.get_transforms()
if not transform.is_affine:
paths = [transform.transform_path_non_affine(p) for p in paths]
transform = transform.get_affine()
if not transOffset.is_affine:
offsets = transOffset.transform_non_affine(offsets)
transOffset = transOffset.get_affine()
if isinstance(offsets, np.ma.MaskedArray):
offsets = offsets.filled(np.nan)
bboxes = []
if len(paths) and len(offsets):
if len(paths) < len(offsets):
# for usual scatters you have one path, but several offsets
paths = [paths[0]]*len(offsets)
if len(transforms) < len(offsets):
# often you may have a single scatter size, but several offsets
transforms = [transforms[0]]*len(offsets)
for p, o, t in zip(paths, offsets, transforms):
result = get_path_collection_extents(
transform.frozen(), [p], [t],
[o], transOffset.frozen())
bboxes.append(result.inverse_transformed(ax.transData))
return bboxes
fig, ax = plt.subplots()
sc = ax.scatter(*np.random.rand(2,5), s=np.random.rand(5)*150+60)
# a single size needs to work as well. As well as a marker with non-square extent
sc2 = ax.scatter([0.2,0.5],[0.1, 0.7], s=990, marker="$\\rightarrow$")
boxes = getbb(sc, ax)
boxes2 = getbb(sc2, ax)
# Draw little rectangles for boxes:
for box in boxes+boxes2:
rec = plt.Rectangle((box.x0, box.y0), box.width, box.height, fill=False,
edgecolor="crimson")
ax.add_patch(rec)
plt.show()