wfm.head()
Out[51]:
OPN Vin Vout_ref Pout_ref CFN ... Cdclink Cdm L k ron
0 6 350 750 80500 1 ... 0.00012 0.00012 0.000131 -0.37 0.001
1 7 400 800 92000 1 ... 0.00012 0.00012 0.000131 -0.37 0.001
2 8 350 900 80500 1 ... 0.00012 0.00012 0.000131 -0.37 0.001
3 9 450 750 103500 1 ... 0.00012 0.00012 0.000131 -0.37 0.001
4 10 450 900 103500 1 ... 0.00012 0.00012 0.000131 -0.37 0.001
[5 rows x 13 columns]
然后,每个模拟循环我都会收到2个如下所示的系列outputs_rms和outputs_avg:
outputs_rms outputs_avg
Out[53]: Out[54]:
time.rms 0.057751 time.avg 5.78E-02
Vi_dc.voltage.rms 400 Vi_dc.voltage.avg 4.00E+02
Vi_dc.current.rms 438.333188 Vi_dc.current.avg 3.81E+02
Vi_dc.power.rms 175333.2753 Vi_dc.power.avg 1.53E+05
Am_in.current.rms 438.333188 Am_in.current.avg 3.81E+02
Cdm.voltage.rms 396.614536 Cdm.voltage.avg 3.96E+02
Cdm.current.rms 0.213185 Cdm.current.avg -5.14E-05
motor_phU.current.rms 566.035833 motor_phU.current.avg -5.67E+02
motor_phU.voltage.rms 296.466083 motor_phU.voltage.avg -9.17E-02
motor_phV.current.rms 0.061024 motor_phV.current.avg 2.58E-02
motor_phV.voltage.rms 1.059341 motor_phV.voltage.avg -1.24E-09
motor_phW.current.rms 566.005071 motor_phW.current.avg 5.67E+02
motor_phW.voltage.rms 297.343876 motor_phW.voltage.avg 9.17E-02
S_ULS.voltage.rms 305.017804 S_ULS.voltage.avg 2.65E+02
S_ULS.current.rms 358.031053 S_ULS.current.avg -1.86E+02
S_UHS.voltage.rms 253.340047 S_UHS.voltage.avg 1.32E+02
S_UHS.current.rms 438.417985 S_UHS.current.avg 3.81E+02
S_VLS.voltage.rms 295.509073 S_VLS.voltage.avg 2.64E+02
S_VLS.current.rms 0 S_VLS.current.avg 0.00E+00
S_VHS.voltage.rms 152.727975 S_VHS.voltage.avg 1.32E+02
S_VHS.current.rms 0.061024 S_VHS.current.avg -2.58E-02
S_WLS.voltage.rms 509.388666 S_WLS.voltage.avg 2.64E+02
S_WLS.current.rms 438.417985 S_WLS.current.avg 3.81E+02
S_WHS.voltage.rms 619.258959 S_WHS.voltage.avg 5.37E+02
S_WHS.current.rms 357.982417 S_WHS.current.avg -1.86E+02
Cdclink.voltage.rms 801.958092 Cdclink.voltage.avg 8.02E+02
Cdclink.current.rms 103.73088 Cdclink.current.avg 2.08E-05
Am_out.current.rms 317.863371 Am_out.current.avg 1.86E+02
Vo_dc.voltage.rms 800 Vo_dc.voltage.avg 8.00E+02
Vo_dc.current.rms 317.863371 Vo_dc.current.avg -1.86E+02
Vo_dc.power.rms 254290.6969 Vo_dc.power.avg -1.49E+05
CFN 1 CFN 1.00E+00
OPN 6 OPN 6.00E+00
dtype: float64 dtype: float64
然后我的目标是基于'CFN'和'OPN'值将output_rms和output_avg放在wfm的右行。
您有什么建议? 谢谢 里卡多
答案 0 :(得分:1)
假设您将这些系列创建为输出output_rms_1,output_rms_2等, 比系列可以合并到一个数据帧中
import pandas as pd
dfRms = pd.DataFrame([output_rms_1, output_rms_2, output_rms_3])
只需使用以下命令即可添加下一个输出(例如output_rms_10):
dfRms = dfRms.append(output_rms_10, ignore_index=True)
最后,当所有输出都合并到一个Dataframe中时, 您可以将原始wfm与输出合并,即
result = pd.merge(wfm, dfRms, on=['CFN', 'OPN'], how='left')
类似地表示平均值。