Hausman检验和radndom效应模型解释

时间:2019-03-05 06:10:32

标签: random effect

我的问题是,为什么Hausman检验显示p值为1?完美1使我担心是正常还是其他问题?

如果正确,应该如何整体解释随机效应模型的输出?

非常感谢。

`> fe.fit = plm(D ~ itr + ip + age + sen + relv + sexdummy + exprdummy + knowdummy, data = merge, family = binomial , index = 'ID', model = "within") summary(fe.fit)`

`> summary(fe.fit) Oneway (individual) effect Within Model`

`Call: plm(formula = D ~ itr + ip + age + sen + relv + sexdummy + exprdummy + 
    knowdummy, data = merge, model = "within", index = "ID", 
    family = binomial)`

`Balanced Panel: n = 203, T = 30, N = 6090`

`Residuals:
    Min.  1st Qu.   Median  3rd Qu.     Max. 
-1.12022 -0.37350  0.10516  0.31743  1.07604 `

`Coefficients:
        Estimate  Std. Error t-value  Pr(>|t|)    
sen  -0.00563553  0.00029832 -18.891 < 2.2e-16 ***
relv  0.00407129  0.00033073  12.310 < 2.2e-16 ***`

`Total Sum of Squares:    1194.5
Residual Sum of Squares: 1046.9
R-Squared:      0.12357
Adj. R-Squared: 0.093187
F-statistic: 414.862 on 2 and 5885 DF, p-value: < 2.22e-16`

`> re.fit = plm(D ~ itr + ip + age + sen + relv + sexdummy + exprdummy + knowdummy, data = merge, family = binomial , index = 'ID', model = "random")`
`> summary(re.fit) Oneway (individual) effect Random Effect Model     (Swamy-Arora's transformation)`

`Call: plm(formula = D ~ itr + ip + age + sen + relv + sexdummy + exprdummy + 
    knowdummy, data = merge, model = "random", index = "ID", 
    family = binomial)`

`Balanced Panel: n = 203, T = 30, N = 6090`

`Effects:
                  var std.dev share
idiosyncratic 0.17789 0.42177 0.884
individual    0.02334 0.15276 0.116
theta: 0.5499`

`Residuals:
    Min.  1st Qu.   Median  3rd Qu.     Max. 
-0.98151 -0.42977  0.15663  0.32311  0.97436 `

`Coefficients:
               Estimate  Std. Error  z-value  Pr(>|z|)    
(Intercept)  0.36474342  0.14934874   2.4422 0.0145970 *  
itr          0.04968868  0.01389861   3.5751 0.0003501 ***
ip          -0.00689283  0.01161468  -0.5935 0.5528748    
age          0.01078111  0.00553912   1.9464 0.0516119 .  
sen         -0.00563553  0.00029832 -18.8908 < 2.2e-16 ***
relv         0.00407129  0.00033073  12.3099 < 2.2e-16 ***
sexdummy    -0.06338253  0.02629987  -2.4100 0.0159528 *  
exprdummy   -0.01749713  0.04206798  -0.4159 0.6774648    
knowdummy    0.02462112  0.04132943   0.5957 0.5513566 `

`Total Sum of Squares:    1234.9 Residual Sum of Squares: 1081.7 R-Squared:      0.12401 Adj. R-Squared: 0.12286 Chisq: 860.86 on 8 DF, p-value: < 2.22e-16 `
`> phtest(fe.fit, re.fit)`

`   Hausman Test`

`data:  D ~ itr + ip + age + sen + relv
+ sexdummy + exprdummy + knowdummy
chisq = 2.0691e-11, df = 2, p-value = 1
alternative hypothesis: one model is inconsistent`

0 个答案:

没有答案