我有一个时间序列数据,我使用pygal
进行了一些绘图。这是数据的样子
[(datetime.datetime(2019, 3, 3, 0, 20, 22, 195908, tzinfo=psycopg2.tz.FixedOffsetTimezone(offset=330, name=None)), 12.0), (datetime.datetime(2019, 3, 3, 0, 20, 25, 807185, tzinfo=psycopg2.tz.FixedOffsetTimezone(offset=330, name=None)), 12.0), (datetime.datetime(2019, 3, 3, 0, 20, 29, 566157, tzinfo=psycopg2.tz.FixedOffsetTimezone(offset=330, name=None)), 12.0), (datetime.datetime(2019, 3, 3, 0, 20, 33, 57685, tzinfo=psycopg2.tz.FixedOffsetTimezone(offset=330, name=None)), 12.0), (datetime.datetime(2019, 3, 3, 0, 54, 32, 3897, tzinfo=psycopg2.tz.FixedOffsetTimezone(offset=330, name=None)), 12.0), (datetime.datetime(2019, 3, 3, 0, 54, 35, 739188, tzinfo=psycopg2.tz.FixedOffsetTimezone(offset=330, name=None)), 12.0), (datetime.datetime(2019, 3, 3, 0, 54, 39, 592752, tzinfo=psycopg2.tz.FixedOffsetTimezone(offset=330, name=None)), 12.0), (datetime.datetime(2019, 3, 3, 0, 54, 43, 242095, tzinfo=psycopg2.tz.FixedOffsetTimezone(offset=330, name=None)), 12.0), (datetime.datetime(2019, 3, 3, 0, 52, 37, 311601, tzinfo=psycopg2.tz.FixedOffsetTimezone(offset=330, name=None)), 11.0), (datetime.datetime(2019, 3, 3, 0, 52, 40, 976424, tzinfo=psycopg2.tz.FixedOffsetTimezone(offset=330, name=None)), 11.0)]
现在,我可以使用bar plot
进行常规pygal
了,但是现在我需要绘制一个histogram
。我发现pandas
可以找到histogram
并使用matplotlib
对其进行绘制。
这就是我所做的
import matplotlib.pyplot as plt
import pandas as pd
import numpy as np
import datetime
import psycopg2
data = [(datetime.datetime(2019, 3, 3, 0, 20, 22, 195908, tzinfo=psycopg2.tz.FixedOffsetTimezone(offset=330, name=None)), 12.0), (datetime.datetime(2019, 3, 3, 0, 20, 25, 807185, tzinfo=psycopg2.tz.FixedOffsetTimezone(offset=330, name=None)), 12.0), (datetime.datetime(2019, 3, 3, 0, 20, 29, 566157, tzinfo=psycopg2.tz.FixedOffsetTimezone(offset=330, name=None)), 12.0), (datetime.datetime(2019, 3, 3, 0, 20, 33, 57685, tzinfo=psycopg2.tz.FixedOffsetTimezone(offset=330, name=None)), 12.0), (datetime.datetime(2019, 3, 3, 0, 54, 32, 3897, tzinfo=psycopg2.tz.FixedOffsetTimezone(offset=330, name=None)), 12.0), (datetime.datetime(2019, 3, 3, 0, 54, 35, 739188, tzinfo=psycopg2.tz.FixedOffsetTimezone(offset=330, name=None)), 12.0), (datetime.datetime(2019, 3, 3, 0, 54, 39, 592752, tzinfo=psycopg2.tz.FixedOffsetTimezone(offset=330, name=None)), 12.0), (datetime.datetime(2019, 3, 3, 0, 54, 43, 242095, tzinfo=psycopg2.tz.FixedOffsetTimezone(offset=330, name=None)), 12.0), (datetime.datetime(2019, 3, 3, 0, 52, 37, 311601, tzinfo=psycopg2.tz.FixedOffsetTimezone(offset=330, name=None)), 11.0), (datetime.datetime(2019, 3, 3, 0, 52, 40, 976424, tzinfo=psycopg2.tz.FixedOffsetTimezone(offset=330, name=None)), 11.0)]
df_hist = pd.DataFrame(np.array(data)).hist(bins=5) // I divide the data into 5 buckets
plt.savefig('hist.svg')
但是我遇到以下错误
Traceback (most recent call last):
File "/home/souvik/Music/Test331.py", line 120, in <module>
df_hist = pd.DataFrame(np.array(data)).hist(bins=5)
File "/home/souvik/django_test/webdev/lib/python3.5/site-packages/pandas/plotting/_core.py", line 2408, in hist_frame
layout=layout)
File "/home/souvik/django_test/webdev/lib/python3.5/site-packages/pandas/plotting/_tools.py", line 238, in _subplots
ax0 = fig.add_subplot(nrows, ncols, 1, **subplot_kw)
File "/home/souvik/django_test/webdev/lib/python3.5/site-packages/matplotlib/figure.py", line 1367, in add_subplot
a = subplot_class_factory(projection_class)(self, *args, **kwargs)
File "/home/souvik/django_test/webdev/lib/python3.5/site-packages/matplotlib/axes/_subplots.py", line 60, in __init__
).format(maxn=rows*cols, num=num))
ValueError: num must be 1 <= num <= 0, not 1
但是,如果我包括数字值并从数据列表中排除datetime
值,那么我得到了图
data = [x[1] for x in data]
df_hist = pd.DataFrame(np.array(data)).hist(bins=5)
plt.savefig('hist.svg')
现在在x轴上,我想要时间序列范围,因此我知道在特定时间间隔内的数据频率。但是,当我包含原始数据时,出现了如上所述的错误。
如何获取histogram
的时间序列数据?另外,我可以不用matplotlib
来使用pygal
吗?
注意:上图是一个更大的数据。我减少了数据量,以便在此处发布问题。