我想评估网格中每个点的功能。问题是,如果我在CPU端创建网格,则将其传输到GPU的过程要比实际计算花费更长的时间。我可以在GPU端生成网格吗?
下面的代码显示了在CPU侧的网格的创建以及在GPU侧的大多数表达式的评估(我不确定如何让atan2在GPU上工作,因此我将其留在CPU上侧)。我应该提前道歉,并说我还在学习这些内容,因此,我确定下面的代码中仍有很大的改进空间!
谢谢!
import math
from numba import vectorize, float64
import numpy as np
from time import time
@vectorize([float64(float64,float64,float64,float64)],target='cuda')
def a_cuda(lat1, lon1, lat2, lon2):
return (math.sin(0.008726645 * (lat2 - lat1))**2) + \
math.cos(0.01745329*(lat1)) * math.cos(0.01745329*(lat2)) * (math.sin(0.008726645 * (lon2 - lon1))**2)
def LLA_distance_numba_cuda(lat1, lon1, lat2, lon2):
a = a_cuda(np.ascontiguousarray(lat1), np.ascontiguousarray(lon1),
np.ascontiguousarray(lat2), np.ascontiguousarray(lon2))
return earthdiam_nm * np.arctan2(a,1-a)
# generate a mesh of one million evaluation points
nx, ny = 1000,1000
xv, yv = np.meshgrid(np.linspace(29, 31, nx), np.linspace(99, 101, ny))
X, Y = np.float64(xv.reshape(1,nx*ny).flatten()), np.float64(yv.reshape(1,nx*ny).flatten())
X2,Y2 = np.float64(np.array([30]*nx*ny)),np.float64(np.array([101]*nx*ny))
start = time()
LLA_distance_numba_cuda(X,Y,X2,Y2)
print('{:d} total evaluations in {:.3f} seconds'.format(nx*ny,time()-start))
答案 0 :(得分:2)
让我们建立性能基准。为earthdiam_nm
添加定义(1.0),并在nvprof
下运行代码,我们有:
$ nvprof python t38.py
1000000 total evaluations in 0.581 seconds
(...)
==1973== Profiling result:
Type Time(%) Time Calls Avg Min Max Name
GPU activities: 55.58% 11.418ms 4 2.8544ms 2.6974ms 3.3044ms [CUDA memcpy HtoD]
28.59% 5.8727ms 1 5.8727ms 5.8727ms 5.8727ms cudapy::__main__::__vectorized_a_cuda$242(Array<double, int=1, A, mutable, aligned>, Array<double, int=1, A, mutable, aligned>, Array<double, int=1, A, mutable, aligned>, Array<double, int=1, A, mutable, aligned>, Array<double, int=1, A, mutable, aligned>)
15.83% 3.2521ms 1 3.2521ms 3.2521ms 3.2521ms [CUDA memcpy DtoH]
(...)
因此在我的特定设置中,“内核”本身在我的(小型,慢速)QuadroK2000 GPU上运行约5.8ms,并且从主机到设备的4个副本和3.2的数据复制时间总计为11.4ms ms,结果传输回主机。重点是从主机到设备的4个副本。
我们先去摘那些低挂的水果。这行代码:
X2,Y2 = np.float64(np.array([30]*nx*ny)),np.float64(np.array([101]*nx*ny))
除了将值30和101传递给每个“工人”以外,实际上没有做任何事情。我在这里使用“工作者”来指代在跨大型数据集“广播” vectorize
函数的numba流程中进行特定标量计算的想法。 numba向量化/广播过程不需要每个输入都是相同大小的数据集,仅要求提供的数据是“广播”的即可。因此,可以创建一个vectorize
ufunc,该ufunc适用于数组和标量。这意味着每个工作人员将使用其数组元素和标量来执行其计算。
因此,低估的结果就是简单地删除这两个数组并将值(30,101)作为标量传递给ufunc a_cuda
。当我们追求“低落的果实”时,让我们将您的arctan2
计算(替换为math.atan2
)和最终的缩放比例earthdiam_nm
合并到矢量化代码中,因此我们没有在python / numpy的主机上执行此操作:
$ cat t39.py
import math
from numba import vectorize, float64
import numpy as np
from time import time
earthdiam_nm = 1.0
@vectorize([float64(float64,float64,float64,float64,float64)],target='cuda')
def a_cuda(lat1, lon1, lat2, lon2, s):
a = (math.sin(0.008726645 * (lat2 - lat1))**2) + \
math.cos(0.01745329*(lat1)) * math.cos(0.01745329*(lat2)) * (math.sin(0.008726645 * (lon2 - lon1))**2)
return math.atan2(a, 1-a)*s
def LLA_distance_numba_cuda(lat1, lon1, lat2, lon2):
return a_cuda(np.ascontiguousarray(lat1), np.ascontiguousarray(lon1),
np.ascontiguousarray(lat2), np.ascontiguousarray(lon2), earthdiam_nm)
# generate a mesh of one million evaluation points
nx, ny = 1000,1000
xv, yv = np.meshgrid(np.linspace(29, 31, nx), np.linspace(99, 101, ny))
X, Y = np.float64(xv.reshape(1,nx*ny).flatten()), np.float64(yv.reshape(1,nx*ny).flatten())
# X2,Y2 = np.float64(np.array([30]*nx*ny)),np.float64(np.array([101]*nx*ny))
start = time()
Z=LLA_distance_numba_cuda(X,Y,30.0,101.0)
print('{:d} total evaluations in {:.3f} seconds'.format(nx*ny,time()-start))
#print(Z)
$ nvprof python t39.py
==2387== NVPROF is profiling process 2387, command: python t39.py
1000000 total evaluations in 0.401 seconds
==2387== Profiling application: python t39.py
==2387== Profiling result:
Type Time(%) Time Calls Avg Min Max Name
GPU activities: 48.12% 8.4679ms 1 8.4679ms 8.4679ms 8.4679ms cudapy::__main__::__vectorized_a_cuda$242(Array<double, int=1, A, mutable, aligned>, Array<double, int=1, A, mutable, aligned>, Array<double, int=1, A, mutable, aligned>, Array<double, int=1, A, mutable, aligned>, Array<double, int=1, A, mutable, aligned>, Array<double, int=1, A, mutable, aligned>)
33.97% 5.9774ms 5 1.1955ms 864ns 3.2535ms [CUDA memcpy HtoD]
17.91% 3.1511ms 4 787.77us 1.1840us 3.1459ms [CUDA memcpy DtoH]
(snip)
现在,我们看到复制HtoD操作已从总计11.4ms减少到总计5.6ms。内核已从约5.8ms增长到了约8.5ms,因为我们正在内核中做更多的工作,但是python报告的函数执行时间已从〜0.58s降至〜0.4s。
我们可以做得更好吗?
我们可以,但是为了做到这一点(我相信),我们需要使用其他的numba cuda方法。 vectorize
方法对于按标量元素进行操作很方便,但是它无法知道要在整个数据集中的哪个位置执行该操作。我们需要此信息,并且可以在CUDA代码中获取它,但是我们需要切换到@cuda.jit
装饰器。
以下代码将先前的vectorize
a_cuda
函数转换为@cuda.jit
设备函数(基本上没有其他更改),然后我们创建一个CUDA内核,该内核根据到提供的标量参数,并计算结果:
$ cat t40.py
import math
from numba import vectorize, float64, cuda
import numpy as np
from time import time
earthdiam_nm = 1.0
@cuda.jit(device='true')
def a_cuda(lat1, lon1, lat2, lon2, s):
a = (math.sin(0.008726645 * (lat2 - lat1))**2) + \
math.cos(0.01745329*(lat1)) * math.cos(0.01745329*(lat2)) * (math.sin(0.008726645 * (lon2 - lon1))**2)
return math.atan2(a, 1-a)*s
@cuda.jit
def LLA_distance_numba_cuda(lat2, lon2, xb, xe, yb, ye, s, nx, ny, out):
x,y = cuda.grid(2)
if x < nx and y < ny:
lat1 = (((xe-xb) * x)/(nx-1)) + xb # mesh generation
lon1 = (((ye-yb) * y)/(ny-1)) + yb # mesh generation
out[y][x] = a_cuda(lat1, lon1, lat2, lon2, s)
nx, ny = 1000,1000
Z = cuda.device_array((nx,ny), dtype=np.float64)
threads = (32,32)
blocks = (32,32)
start = time()
LLA_distance_numba_cuda[blocks,threads](30.0,101.0, 29.0, 31.0, 99.0, 101.0, earthdiam_nm, nx, ny, Z)
Zh = Z.copy_to_host()
print('{:d} total evaluations in {:.3f} seconds'.format(nx*ny,time()-start))
#print(Zh)
$ nvprof python t40.py
==2855== NVPROF is profiling process 2855, command: python t40.py
1000000 total evaluations in 0.294 seconds
==2855== Profiling application: python t40.py
==2855== Profiling result:
Type Time(%) Time Calls Avg Min Max Name
GPU activities: 75.60% 10.364ms 1 10.364ms 10.364ms 10.364ms cudapy::__main__::LLA_distance_numba_cuda$241(double, double, double, double, double, double, double, __int64, __int64, Array<double, int=2, A, mutable, aligned>)
24.40% 3.3446ms 1 3.3446ms 3.3446ms 3.3446ms [CUDA memcpy DtoH]
(...)
现在我们看到了: