我有一个数据集,只想将行放在一个时间范围内。 我将所有好的行放入Series对象中。但是当我将该对象重新分配给DataFrame对象时,会得到NaT值:
代码:
def get_tweets_from_range_in_csv():
csvfile1 = "results_dataGOOGL050"
df1 = temp(csvfile1)
def temp(csvfile):
tweetdats = []
d = pd.read_csv(csvfile + ".csv", encoding='latin-1')
start = datetime.datetime.strptime("01-01-2018", "%d-%m-%Y")
end = datetime.datetime.strptime("01-06-2018", "%d-%m-%Y")
for index, current_tweet in d['Date'].iteritems():
date_tw = datetime.datetime.strptime(current_tweet[:10], "%Y-%m-%d")
if start <= date_tw <= end:
tweetdats.append(date_tw)
else:
d.drop(index, inplace=True)
d = d.drop("Likes", 1)
d = d.drop("RTs", 1)
d = d.drop("Sentiment", 1)
d = d.drop("User", 1)
d = d.drop("Followers", 1)
df1['Date'] = pd.Series(tweetdats)
return d
tweetdats的输出:
tweetdats
Out[340]:
[datetime.datetime(2018, 1, 30, 0, 0),
datetime.datetime(2018, 4, 1, 0, 0),
datetime.datetime(2018, 4, 1, 0, 0),
datetime.datetime(2018, 4, 1, 0, 0),
datetime.datetime(2018, 1, 5, 0, 0),
datetime.datetime(2018, 1, 5, 0, 0),
datetime.datetime(2018, 1, 8, 0, 0),
datetime.datetime(2018, 1, 20, 0, 0),
datetime.datetime(2018, 1, 22, 0, 0),
datetime.datetime(2018, 1, 5, 0, 0)]
答案 0 :(得分:1)
您不需要使用for
循环遍历数据框来选择感兴趣的时间范围内的行。
让我们假设您的初始数据框df
的“日期”列包含日期时间格式的日期;然后,您只需创建一个新的数据框new_df
:
new_df=df[(pd.to_datetime(df.time) > start) & (pd.to_datetime(self.df.time) < end)]
通过这种方式,您不必复制和粘贴系列中的“好”行,然后将它们重新分配给数据框。
您的temp
函数如下所示:
def temp(csvfile):
df = pd.read_csv(csvfile + ".csv", encoding='latin-1')
start = datetime.datetime.strptime("01-01-2018", "%d-%m-%Y")
end = datetime.datetime.strptime("01-06-2018", "%d-%m-%Y")
new_df=df[(pd.to_datetime(df.time) > start) & (pd.to_datetime(self.df.time) < end)]
希望这会有所帮助!