下面是用于从kafka主题(8个分区)接收消息并对其进行处理的使用者代码。
@Component
public class MessageConsumer {
private static final String TOPIC = "mytopic.t";
private static final String GROUP_ID = "mygroup";
private final ReceiverOptions consumerSettings;
private static final Logger LOG = LoggerFactory.getLogger(MessageConsumer.class);
@Autowired
public MessageConsumer(@Qualifier("consumerSettings") ReceiverOptions consumerSettings)
{
this.consumerSettings=consumerSettings;
consumerMessage();
}
private void consumerMessage()
{
KafkaReceiver<String, String> receiver = KafkaReceiver.create(receiverOptions(Collections.singleton(TOPIC)));
Scheduler scheduler = Schedulers.newElastic("FLUX_DEFER", 10, true);
Flux.defer(receiver::receive)
.groupBy(m -> m.receiverOffset().topicPartition())
.flatMap(partitionFlux ->
partitionFlux.publishOn(scheduler)
.concatMap(m -> {
LOG.info("message received from kafka : " + "key : " + m.key()+ " partition: " + m.partition());
return process(m.key(), m.value())
.thenEmpty(m.receiverOffset().commit());
}))
.retryBackoff(5, Duration.ofSeconds(2), Duration.ofHours(2))
.doOnError(err -> {
handleError(err);
}).retry()
.doOnCancel(() -> close()).subscribe();
}
private void close() {
}
private void handleError(Throwable err) {
LOG.error("kafka stream error : ",err);
}
private Mono<Void> process(String key, String value)
{
if(key.equals("error"))
return Mono.error(new Exception("process error : "));
LOG.error("message consumed : "+key);
return Mono.empty();
}
public ReceiverOptions<String, String> receiverOptions(Collection<String> topics) {
return consumerSettings
.commitInterval(Duration.ZERO)
.commitBatchSize(0)
.addAssignListener(p -> LOG.info("Group {} partitions assigned {}", GROUP_ID, p))
.addRevokeListener(p -> LOG.info("Group {} partitions assigned {}", GROUP_ID, p))
.subscription(topics);
}
}
@Bean(name="consumerSettings")
public ReceiverOptions<String, String> getConsumerSettings() {
Map<String, Object> props = new HashMap<>();
props.put(ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG, bootstrapServers);
props.put(ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG, StringDeserializer.class);
props.put(ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG, StringDeserializer.class);
props.put(ConsumerConfig.GROUP_ID_CONFIG, GROUP_ID);
props.put(ConsumerConfig.CLIENT_ID_CONFIG, GROUP_ID);
props.put(ConsumerConfig.AUTO_OFFSET_RESET_CONFIG, "earliest");
props.put(ConsumerConfig.ENABLE_AUTO_COMMIT_CONFIG, false);
props.put("max.block.ms", "3000");
props.put("request.timeout.ms", "3000");
return ReceiverOptions.create(props);
}
接收到每条消息后,如果消费的消息成功处理,我的处理逻辑将返回空单声道。
如果处理逻辑中没有返回错误,一切都会按预期进行。
但是,如果我在处理逻辑中针对特定消息抛出错误以模拟异常行为,那么我将无法处理导致异常的消息。流将移至下一条消息。
我要实现的是,处理当前消息,如果成功,则提交偏移量,然后移至下一条记录。
如果在处理消息时发生任何异常,请不要提交当前偏移量,然后重试同一条消息,直到成功为止。在当前消息成功发送之前,请勿移至下一条消息。
请让我知道如何处理流程失败而不跳过消息并使流从引发异常的偏移量开始。
此致
Vinoth
答案 0 :(得分:0)
创建不同的消费群体。
每个消费者组将与一个数据库相关。
创建您的使用者,以便他们仅处理相关事件并将其推送到相关数据库。如果数据库关闭,则将使用者配置为重试无限时间。 无论出于何种原因,如果您的消费者死亡,请确保他们从较早的消费者离开的地方开始。将数据提交到数据库并将ack发送给kafka经纪人之后,您的消费者极有可能死掉。您需要更新使用者代码,以确保完全一次处理消息(如果需要)。
答案 1 :(得分:0)
以下代码对我有用。想法是重试配置的次数失败的消息,如果仍然失败,则将其移至失败的队列并提交消息。同时处理来自其他分区的消息。
如果来自特定分区的消息在配置的次数上失败,请在延迟后重新启动流,以便我们可以通过不连续击中它们来处理依赖项失败。
@Autowired
public ReactiveMessageConsumer(@Qualifier("consumerSettings") ReceiverOptions consumerSettings,MessageProducer producer)
{
this.consumerSettings=consumerSettings;
this.fraudCheckService=fraudCheckService;
this.producer=producer;
consumerMessage();
}
private void consumerMessage() {
int numRetries=3;
Scheduler scheduler = Schedulers.newElastic("FLUX_DEFER", 10, true);
KafkaReceiver<String, String> receiver = KafkaReceiver.create(receiverOptions(Collections.singleton(TOPIC)));
Flux<GroupedFlux<TopicPartition, ReceiverRecord<String, String>>> f = Flux.defer(receiver::receive)
.groupBy(m -> m.receiverOffset().topicPartition());
Flux f1 = f.publishOn(scheduler).flatMap(r -> r.publishOn(scheduler).concatMap(b ->
Flux.just(b)
.concatMap(a -> {
LOG.error("processing message - order: {} offset: {} partition: {}",a.key(),a.receiverOffset().offset(),a.receiverOffset().topicPartition().partition());
return process(a.key(), a.value()).
then(a.receiverOffset().commit())
.doOnSuccess(d -> LOG.info("committing order {}: offset: {} partition: {} ",a.key(),a.receiverOffset().offset(),a.receiverOffset().topicPartition().partition()))
.doOnError(d -> LOG.info("committing offset failed for order {}: offset: {} partition: {} ",a.key(),a.receiverOffset().offset(),a.receiverOffset().topicPartition().partition()));
})
.retryWhen(companion -> companion
.doOnNext(s -> LOG.info(" --> Exception processing message for order {}: offset: {} partition: {} message: {} " , b.key() , b.receiverOffset().offset(),b.receiverOffset().topicPartition().partition(),s.getMessage()))
.zipWith(Flux.range(1, numRetries), (error, index) -> {
if (index < numRetries) {
LOG.info(" --> Retying {} order: {} offset: {} partition: {} ", index, b.key(),b.receiverOffset().offset(),b.receiverOffset().topicPartition().partition());
return index;
} else {
LOG.info(" --> Retries Exhausted: {} - order: {} offset: {} partition: {}. Message moved to error queue. Commit and proceed to next", index, b.key(),b.receiverOffset().offset(),b.receiverOffset().topicPartition().partition());
producer.sendMessages(ERROR_TOPIC,b.key(),b.value());
b.receiverOffset().commit();
//return index;
throw Exceptions.propagate(error);
}
})
.flatMap(index -> Mono.delay(Duration.ofSeconds((long) Math.pow(1.5, index - 1) * 3)))
.doOnNext(s -> LOG.info(" --> Retried at: {} ", LocalTime.now()))
))
);
f1.doOnError(a -> {
LOG.info("Moving to next message because of : ", a);
try {
Thread.sleep(5000); // configurable
} catch (InterruptedException e) {
e.printStackTrace();
}
}
).retry().subscribe();
}
public ReceiverOptions<String, String> receiverOptions(Collection<String> topics) {
return consumerSettings
.commitInterval(Duration.ZERO)
.commitBatchSize(0)
.addAssignListener(p -> LOG.info("Group {} partitions assigned {}", GROUP_ID, p))
.addRevokeListener(p -> LOG.info("Group {} partitions assigned {}", GROUP_ID, p))
.subscription(topics);
}
private Mono<Void> process(OrderId orderId, TraceId traceId)
{
try {
Thread.sleep(500); // simulate slow response
} catch (InterruptedException e) {
// Causes the restart
e.printStackTrace();
}
if(orderId.getId().startsWith("error")) // simulate error scenario
return Mono.error(new Exception("processing message failed for order: " + orderId.getId()));
return Mono.empty();
}