我正在尝试运行此stm教程的初始步骤
https://github.com/dondealban/learning-stm
使用此数据集,它是原始数据集的一部分
http://www.mediafire.com/file/1jk2aoz4ac84jn6/data.csv/file
install.packages("stm")
library(stm)
load("VignetteObjects.RData")
data <- read.csv("C:/data.csv")
head(data)
processed <- textProcessor(data$documents, metadata=data)
out <- prepDocuments(processed$documents, processed$vocab, processed$meta)
docs <- out$documents
vocab <- out$vocab
meta <- out$meta
poliblogPrevFit <- stm(out$documents, out$vocab, K=4, prevalence=~rating+s(day),
max.em.its=200, data=out$meta, init.type="Spectral",
seed=8458159)
但是我仍然收到相同的错误
Error in makeTopMatrix(prevalence, data) : Error creating model matrix.
This could be caused by many things including
explicit calls to a namespace within the formula.
Try a simpler formula.
任何人都可以在64位MS Windows R-3.5.2。中运行它。我什至在任何地方都找不到类似的错误。
答案 0 :(得分:1)
似乎您的问题是,在进行采样时,您最终得到的因子对象只有一个级别:
data <- read.csv("https://raw.githubusercontent.com/dondealban/learning-stm/master/data/poliblogs2008.csv")
processed <- textProcessor(data$documents, metadata = data)
out <- prepDocuments(processed$documents, processed$vocab, processed$meta)
docs <- out$documents
vocab <- out$vocab
meta <- out$meta
levels(meta$rating)
[1] "Conservative" "Liberal"
poliblogPrevFit <- stm(docs, vocab, K = 4, prevalence = ~rating+s(day),
max.em.its = 200, data = out$meta, init.type = "Spectral",
seed = 8458159)
使用这样的变量没有任何意义,因为情况之间没有差异。如果您使用原始数据,则您的代码绝对可以正常工作:
akka.pattern.AskableActorRef