我正在scikit-learn中使用决策树对垃圾邮件进行分类。在这里和其他地方阅读了各种文章之后,我将我的初始数据集分为训练和测试,并使用交叉验证对训练集执行了超参数调整。以我的理解,应该在训练和测试中计算分数,以检查模型是否过拟合;考虑到测试集上的分数很好,我是否可以排除这个问题,并提出从整个数据集中获得的分数?还是应该显示测试集的结果? 这是用于训练/测试集的代码:
scores = cross_val_score(tree, x_train, y_train, cv=10)
scores_pre = cross_val_score(tree, x_train, y_train, cv=10, scoring="precision")
scores_f1 = cross_val_score(tree, x_train, y_train, cv=10, scoring="f1")
scores_recall = cross_val_score(tree, x_train, y_train, cv=10, scoring="recall")
print("Accuracy: %0.2f (+/- %0.2f)" % (scores.mean(), scores.std() * 2))
print("Precision: %0.2f (+/- %0.2f)" % (scores_pre.mean(), scores_pre.std() * 2))
print("F-Measure: %0.2f (+/- %0.2f)" % (scores_f1.mean(), scores_f1.std() * 2))
print("Recall: %0.2f (+/- %0.2f)" % (scores_recall.mean(), scores_recall.std() * 2))
Accuracy: 0.97 (+/- 0.02)
Precision: 0.98 (+/- 0.02)
F-Measure: 0.98 (+/- 0.01)
Recall: 0.98 (+/- 0.02)
scores = cross_val_score(tree, x_test, y_test, cv=10)
scores_pre = cross_val_score(tree, x_test, y_test, cv=10, scoring="precision")
scores_f1 = cross_val_score(tree, x_test, y_test, cv=10, scoring="f1")
scores_recall = cross_val_score(tree, x_test, y_test, cv=10, scoring="recall")
print("Accuracy: %0.2f (+/- %0.2f)" % (scores.mean(), scores.std() * 2))
print("Precision: %0.2f (+/- %0.2f)" % (scores_pre.mean(), scores_pre.std() * 2))
print("F-Measure: %0.2f (+/- %0.2f)" % (scores_f1.mean(), scores_f1.std() * 2))
print("Recall: %0.2f (+/- %0.2f)" % (scores_recall.mean(), scores_recall.std() * 2))
Accuracy: 0.95 (+/- 0.03)
Precision: 0.96 (+/- 0.02)
F-Measure: 0.96 (+/- 0.02)
Recall: 0.97 (+/- 0.03)
这是整个数据集的代码:
scores = cross_val_score(tree, X, y, cv=10)
scores_pre = cross_val_score(tree, X, y, cv=10, scoring="precision")
scores_f1 = cross_val_score(tree, X, y, cv=10, scoring="f1")
scores_recall = cross_val_score(tree, X, y, cv=10, scoring="recall")
print("Accuracy: %0.2f (+/- %0.2f)" % (scores.mean(), scores.std() * 2))
print("Precision: %0.2f (+/- %0.2f)" % (scores_pre.mean(), scores_pre.std() * 2))
print("F-Measure: %0.2f (+/- %0.2f)" % (scores_f1.mean(), scores_f1.std() * 2))
print("Recall: %0.2f (+/- %0.2f)" % (scores_recall.mean(), scores_recall.std() * 2))
Accuracy: 0.97 (+/- 0.04)
Precision: 0.98 (+/- 0.03)
F-Measure: 0.98 (+/- 0.03)
Recall: 0.98 (+/- 0.03)
答案 0 :(得分:0)
不,您的最终报告分数应始终位于测试集上,而实际上是验证集。