如何在multindex数据框(Python)中将十进制转换为行的二进制值?

时间:2019-03-04 10:02:35

标签: python pandas dataframe binary multi-index

您能否让我知道如何将multindex数据框中的行的十进制转换为二进制值?

下面是我使用的数据框

from pandas import Series, DataFrame

raw_data = {'Function': ['env', 'env', 'env', 'func1', 'func1', 'func1'],
            'Type': ['In', 'In', 'In', 'In','In', 'out'],
            'Name': ['Volt', 'Temp', 'BD#', 'Name1','Name2', 'Name3'],
            'Val1': ['Max', 'High', '1', '3', '5', '6'],
            'Val2': ['Typ', 'Mid', '2', '4', '7', '6'],
            'Val3': ['Min', 'Low', '3', '3', '6', '3'],
            'Val4': ['Max', 'High', '4', '3', '9', '4'],
            'Val5': ['Max', 'Low', '5', '3', '4', '5'] }
df = DataFrame(raw_data)
df= df.set_index(["Function", "Type","Name"])
print (df)

下面是打印的数据框

                            Val1    Val2    Val3    Val4    Val5
 Function   Type    Name                    
 env        In      Volt    Max     Typ     Min     Max     Max
                    Temp    High    Mid     Low     High    Low
                    BD#     1       2       3       4       5
 func1      In      Name1   3       4       3       3       3
                    Name2   5       7       6       9       4
            out     Name3   6       6       3       4       5

我想将多索引数据框中的行(func1-In-Name1,Name2)的十进制转换为二进制值。

以下是我想要的df。

                            Val1    Val2    Val3    Val4    Val5
 Function   Type    Name                    
 env        In      Volt    Max     Typ     Min     Max     Max
                    Temp    High    Mid     Low     High    Low
                    BD#     1       2       3       4       5
 func1      In      Name1   11      100     11      11      11
                    Name2   101     111     110     1001    100
            out     Name3   6       6       3       4       5

我试图获得正确的结果,但失败了。 TT

请让我知道如何简单地解决它。

2 个答案:

答案 0 :(得分:1)

使用MultiIndex.get_level_values创建条件,链接在一起并按f-string s设置新值:

m1 = df.index.get_level_values(0) == 'func1'
m2 = df.index.get_level_values(1) == 'In'

df[m1 & m2] = df[m1 & m2].astype(int).applymap(lambda x: f'{x:b}')
print (df)
                     Val1 Val2 Val3  Val4 Val5
Function Type Name                            
env      In   Volt    Max  Typ  Min   Max  Max
              Temp   High  Mid  Low  High  Low
              BD#       1    2    3     4    5
func1    In   Name1    11  100   11    11   11
              Name2   101  111  110  1001  100
         out  Name3     6    6    3     4    5

答案 1 :(得分:1)

通过创建数据框的掩码:

mask = ((df.index.get_level_values('Function') == 'func1')&
                (df.index.get_level_values('Type') == 'In')&
                (df.index.get_level_values('Name').isin(['Name1', 'Name2'])))

df[mask] = df[mask].astype(int).applymap(lambda x: format(x, 'b'))  

print(df[mask])

                     Val1 Val2 Val3  Val4 Val5
Function Type Name                            
env      In   Volt    Max  Typ  Min   Max  Max
              Temp   High  Mid  Low  High  Low
              BD#       1    2    3     4    5
func1    In   Name1    11  100   11    11   11
              Name2   101  111  110  1001  100
         out  Name3     6    6    3     4    5