我在Keras中有一个简单的自动编码器,我想使用日志记录到张量板(因此我需要传递验证数据),并使用Tensorflow Dataset API和prefetch从TFRecord加载数据。 我读了一些有关它的文章,但他们要么省略了验证管道,要么直接传递数据而没有提要dict的事实要慢得多。
源代码是
import tensorflow as tf
from keras.losses import mean_squared_error
from keras.models import Sequential, Model
from keras.layers import Dense, Input, Flatten, Reshape, Convolution2D, Convolution2DTranspose, Conv2D, Conv2DTranspose
from keras.optimizers import Adam
from keras import backend as K
from keras.callbacks import TensorBoard
def create_dataset(tf_record, batch_size):
data = tf.data.TFRecordDataset(tf_record)
data = data.map(TFReader._parse_example_encoded, num_parallel_calls=8)
data = data.apply(tf.data.experimental.shuffle_and_repeat(buffer_size=100))
data = data.batch(batch_size, drop_remainder=True)
data = data.prefetch(4)
return data
def main(_):
batch_size = 8 # todo: check and try bigger
data = create_dataset('../../datasets/anime/no-game-no-life-ep-2.tfrecord', batch_size)
iterator = data.make_one_shot_iterator()
K.set_image_data_format('channels_last') # set format
input_tensor = Input(tensor=iterator.get_next())
out = Conv2D(8, (3, 3), activation='elu', border_mode='valid', batch_input_shape=(batch_size, 432, 768, 3))(input_tensor)
out = Conv2D(16, (3, 3), activation='elu', border_mode='valid')(out)
out = Conv2D(32, (3, 3), activation='elu', border_mode='valid', name='bottleneck')(out)
out = Conv2DTranspose(32, (3, 3), activation='elu', padding='valid')(out)
out = Conv2DTranspose(16, (3, 3), activation='elu', padding='valid')(out)
out = Conv2DTranspose(8, (3, 3), activation='elu', padding='valid')(out)
out = Conv2D(3, (3, 3), activation='elu', padding='same')(out)
m = Model(inputs=input_tensor, outputs=out)
m.compile(loss=mean_squared_error, optimizer=Adam(), target_tensors=iterator.get_next())
print(m.summary())
tensorboard = TensorBoard(
log_dir='logs/anime', histogram_freq=5, embeddings_freq=5, embeddings_layer_names=['bottleneck'],
write_images=True, embeddings_data=iterator.get_next(), embeddings_metadata='embeddings.tsv')
config = tf.ConfigProto()
config.gpu_options.allow_growth = True
set_session(tf.Session(config=config))
history = m.fit(steps_per_epoch=100, epochs=50, verbose=1,
validation_data=(iterator.get_next(), iterator.get_next()),
validation_steps=4,
callbacks=[tensorboard]
)
if __name__ == '__main__':
tf.app.run()
训练本身开始,第一个纪元训练,但随后在验证过程中失败,
File "C:\Users\Azathoth\AppData\Local\JetBrains\Toolbox\apps\PyCharm-P\ch-0\183.5429.31\helpers\pydev\pydevd.py", line 1741, in <module>
main()
File "C:\Users\Azathoth\AppData\Local\JetBrains\Toolbox\apps\PyCharm-P\ch-0\183.5429.31\helpers\pydev\pydevd.py", line 1735, in main
globals = debugger.run(setup['file'], None, None, is_module)
File "C:\Users\Azathoth\AppData\Local\JetBrains\Toolbox\apps\PyCharm-P\ch-0\183.5429.31\helpers\pydev\pydevd.py", line 1135, in run
pydev_imports.execfile(file, globals, locals) # execute the script
File "C:\Users\Azathoth\AppData\Local\JetBrains\Toolbox\apps\PyCharm-P\ch-0\183.5429.31\helpers\pydev\_pydev_imps\_pydev_execfile.py", line 18, in execfile
exec(compile(contents+"\n", file, 'exec'), glob, loc)
File "E:/Projects/anime-style-transfer/code/neural_style_transfer/anime_dimension_reduction_keras.py", line 95, in <module>
tf.app.run()
File "C:\ProgramData\Anaconda3\lib\site-packages\tensorflow\python\platform\app.py", line 125, in run
_sys.exit(main(argv))
File "E:/Projects/anime-style-transfer/code/neural_style_transfer/anime_dimension_reduction_keras.py", line 78, in main
callbacks=[tensorboard]
File "C:\ProgramData\Anaconda3\lib\site-packages\keras\engine\training.py", line 1039, in fit
validation_steps=validation_steps)
File "C:\ProgramData\Anaconda3\lib\site-packages\keras\engine\training_arrays.py", line 217, in fit_loop
callbacks.on_epoch_end(epoch, epoch_logs)
File "C:\ProgramData\Anaconda3\lib\site-packages\keras\callbacks.py", line 79, in on_epoch_end
callback.on_epoch_end(epoch, logs)
File "C:\ProgramData\Anaconda3\lib\site-packages\keras\callbacks.py", line 912, in on_epoch_end
raise ValueError("If printing histograms, validation_data must be "
ValueError: If printing histograms, validation_data must be provided, and cannot be a generator.
我认为问题在于传递验证数据,因为它直接使用了训练tfrecord的输入张量。
尽管我不需要单独的训练和验证数据,所以如果有什么办法告诉Keras,它可以在相同的输入上进行验证,那只要我获得TensorBoard日志就可以了。
答案 0 :(得分:0)
很少有选择: