在this previous post之后,这个问题得到了@ecortazar的回答。但是,我也想在pd.Series的两个元素之间粘贴,其中不包含某个字符串,仅使用Pandas / Numpy。注意:文字中所有带有href
的行都是不同的。
import pandas as pd
import numpy as np
table = pd.Series(
["<td class='test'>AA</td>", # 0
"<td class='test'>A</td>", # 1
"<td class='test'><a class='test' href=...", # 2
"<td class='test'>B</td>", # 3
"<td class='test'><a class='test' href=...", # 4
"<td class='test'>BB</td>", # 5
"<td class='test'>C</td>", # 6
"<td class='test'><a class='test' href=...", # 7
"<td class='test'>F</td>", # 8
"<td class='test'>G</td>", # 9
"<td class='test'><a class='test' href=...", # 10
"<td class='test'>X</td>"]) # 11
dups = ~table.str.contains('href') & table.shift(-1).str.contains('href')
array = np.insert(table.values, dups[dups].index, "None")
pd.Series(array)
# OUTPUT:
# 0 <td class='test'>AA</td>
# 1 None
# 2 <td class='test'>A</td>
# 3 <td class='test'><a class='test' href=...
# 4 None Incorrect
# 5 <td class='test'>B</td>
# 6 <td class='test'><a class='test' href=...
# 7 <td class='test'>BB</td>
# 8 None
# 9 <td class='test'>C</td>
# 10 <td class='test'><a class='test' href=...
# 11 <td class='test'>F</td>
# 12 None
# 13 <td class='test'>G</td>
# 14 <td class='test'><a class='test' href=...
# 15 <td class='test'>X</td>
这是我想要的实际文本输出。
# OUTPUT:
# 0 <td class='test'>AA</td>
# 1 None
# 2 <td class='test'>A</td>
# 3 <td class='test'><a class='test' href=...
# 4 <td class='test'>B</td>
# 5 <td class='test'><a class='test' href=...
# 6 <td class='test'>BB</td>
# 7 None
# 8 <td class='test'>C</td>
# 9 <td class='test'><a class='test' href=...
# 10 <td class='test'>F</td>
# 11 None
# 12 <td class='test'>G</td>
# 13 <td class='test'><a class='test' href=...
# 14 <td class='test'>X</td>
答案 0 :(得分:1)
您可以执行与以前相同的过程。
唯一的警告是您必须在转换前执行not(〜)运算符。原因是该移位将在Series的第一个位置创建一个np.nan,这会将Series定义为float,从而导致not操作失败。
import pandas as pd
import numpy as np
table = pd.Series(
["<td class='test'>AA</td>", # 0
"<td class='test'>A</td>", # 1
"<td class='test'><a class='test' href=...", # 2
"<td class='test'>B</td>", # 3
"<td class='test'><a class='test' href=...", # 4
"<td class='test'>BB</td>", # 5
"<td class='test'>C</td>", # 6
"<td class='test'><a class='test' href=...", # 7
"<td class='test'>F</td>", # 8
"<td class='test'>G</td>", # 9
"<td class='test'><a class='test' href=...", # 10
"<td class='test'>X</td>"]) # 11
not_contain = ~table.str.contains('href')
cond = not_contain & not_contain.shift(1)
array = np.insert(table.values, cond[cond].index, "None")
pd.Series(array)
答案 1 :(得分:0)
这解决了上述问题,但没有Numpy和Pandas。如果您可以与他们一起重新创建,我会给您正确的答案。
import pandas as pd
import numpy as np
table = pd.Series(
["<td class='test'>AA</td>", # 0
"<td class='test'>A</td>", # 1
"<td class='test'><a class='test' href=...", # 2
"<td class='test'>B</td>", # 3
"<td class='test'><a class='test' href=...", # 4
"<td class='test'>BB</td>", # 5
"<td class='test'>C</td>", # 6
"<td class='test'><a class='test' href=...", # 7
"<td class='test'>F</td>", # 8
"<td class='test'>G</td>", # 9
"<td class='test'><a class='test' href=...", # 10
"<td class='test'>X</td>"]) # 11
insertAt = []
for i in range(0, len(table)-1):
# print('count ', i)
if i == 1:
if 'href' not in table[0] and 'href' not in table[1]:
print(i, ' starts with tag')
print(i, ' is duplicated')
insertAt.append(True)
insertAt.append(True)
next
elif 'href' not in table[0] and 'href' in table[1]:
print(i, ' not start with tag')
print(i, ' is not duplicated')
insertAt.append(True)
insertAt.append(False)
next
else:
print(i, ' not start with tag')
print(i, ' is not duplicated')
insertAt.append(False)
insertAt.append(False)
next
if i > 1:
if 'href' not in table[i-1] and 'href' not in table[i]:
print(i + 1, ' is duplicated')
insertAt.append(True)
else:
print(i + 1, ' is not duplicated')
insertAt.append(False)
insertAt = pd.Series(insertAt)
array = np.insert(table.values, insertAt[insertAt].index, "None")
pd.Series(array) # back to series if necessary