如何在等高线上绘制带有条件的数组?

时间:2019-03-01 10:43:49

标签: python python-3.x numpy matplotlib cartopy

我已使用以下代码绘制了GPP的全球地图:

('lon'和'lat'都是netCDF4属性,分别具有(144,)和(90,)的形状,而'gpp_avg'是具有(90,144)形状的numpy数组) / p>

import numpy as np
import netCDF4 as n4
import matplotlib.pyplot as plt

import cartopy as cart
import cartopy.crs as ccrs
from cartopy.mpl.gridliner import LONGITUDE_FORMATTER, LATITUDE_FORMATTER
from mpl_toolkits.basemap import Basemap

>> gpp_avg = n4.Dataset('decadal_gpp.nc', 'r')
>> lon = gpp_avg.variables['lon'] # 144 grid cells every 2.5 degrees (east-west)
>> lat = gpp_avg.variables['lat'] # 90 grid cells every 2 degrees (north-south)

>> # Plotting data on a map with Cartopy
>> plt.figure()
>> ax = plt.axes(projection=ccrs.PlateCarree())
>> ax.coastlines() # Adding coastlines
>> ax.add_feature(cart.feature.OCEAN, zorder=100, edgecolor='k')
>> cs = ax.contourf(lon[:], lat[:], gpp_avg[:], cmap = 'Spectral')

>> cbar = plt.colorbar(cs, ax=ax) # Additional necessary information
>> cbar.set_label('g[C]/m^2/day')
>> gridl = ax.gridlines(color="black", linestyle="dotted", 
           draw_labels=True) # Adding axis labels - latitude & longitude
>> gridl.xformatter=LONGITUDE_FORMATTER
>> gridl.yformatter=LATITUDE_FORMATTER
>> gridl.xlabels_top = False
>> gridl.ylabels_right = False
>> plt.show()

我有一个numpy数组'ci_95_gpp',其形状为(90,144),其中包含全局地图的每个网格单元的p值。我想在全局轮廓图的顶部绘制p值大于2的点。

我将如何去做?非常感谢。

1 个答案:

答案 0 :(得分:0)

我为Cartopy地图上的轮廓图生成了一组数据。轮廓数据点分为2组,分别具有负z值和正z值。在该操作中使用了Numpy maskedarray。我希望这对包括OP在内的普通读者有用。

import cartopy.crs as ccrs
import matplotlib.pyplot as plt
import numpy as np
import matplotlib.ticker as mticker
from cartopy.mpl.gridliner import LONGITUDE_FORMATTER, LATITUDE_FORMATTER
import pandas as pd

from numpy.random import uniform, seed
from matplotlib.mlab import griddata   
# TODO, use newer scipy.interpolate() instead of `griddata`
import numpy.ma as ma

# make up some data around long,lat: (90, 18)
seed(0)
npts = 200
x0, y0 = 90, 18   # center of map in (long, lat), degrees
x = x0+uniform(-2, 2, npts)
y = y0+uniform(-2, 2, npts)
#z = x*np.exp(-x**2 - y**2)
z = (x-x0)*np.exp(-(x-x0)**2 - (y-y0)**2)  # elevation in meters

# define grid, for points interpolation from the made-up data above
gridx, gridy = 50,50
xi = x0+np.linspace(-2.1, 2.1, gridx)
yi = y0+np.linspace(-2.1, 2.1, gridy)

# interpolate for gridded data of (gridx, gridy) 
zi = griddata(x, y, z, xi, yi, interp='linear')
# xi.shape, yi.shape, zi.shape  => ((50,), (50,), (50, 50))

xig,yig = np.meshgrid(xi, yi)

# projection
useproj = ccrs.PlateCarree()
fig = plt.figure(figsize = (9, 7))
rect = [0.05, 0.05, 0.95, 0.95]  # for map extent
ax = fig.add_axes( rect, projection=useproj )

# contour the gridded data, plotting dots at the nonuniform data points.
CS = ax.contour(xig, yig, zi, 15, linewidths=0.5, colors='k')
CS = ax.contourf(xig, yig, zi, 15,
                  vmax=abs(zi).max(), vmin=-abs(zi).max())
plt.colorbar(CS)  # draw colorbar

# prep points for scatterplot of the gridded points
# make 2 masked-arrays, based on `zi`
mag = ma.masked_greater(zi, 0)  # mask points with +ve zi values
mal = ma.masked_less(zi, 0)     # mask points with -ve zi values

# apply masking to xig,yig; borrowing mask from mag
xig_greater_masked = ma.MaskedArray(xig, mask=mag.mask)  # must have compatible values
yig_greater_masked = ma.MaskedArray(yig, mask=mag.mask)

# apply masking to xig,yig; borrowing mask from mal
xig_less_masked = ma.MaskedArray(xig, mask=mal.mask)
yig_less_masked = ma.MaskedArray(yig, mask=mal.mask)

# for points with -ve z values (result of .masked_greater)
plt.scatter(xig_greater_masked, yig_greater_masked, s=3, color="w", \
            alpha=1, zorder=15, label="masked_greater z")
# for points with +ve z values (result of .masked_less)
ax.scatter(xig_less_masked, yig_less_masked, s=3, color="r", alpha=1, \
           zorder=15, label="masked_less z") 

leg = ax.legend(title='Masked z', framealpha=1.0, facecolor="lightgray")
leg.set_zorder(20)

gl = ax.gridlines(crs=ccrs.PlateCarree(), draw_labels=True,
                  linewidth=2, color='gray', alpha=0.5, linestyle='--')

gl.xlabels_top = False
gl.ylabels_right = False

gl.xformatter = LONGITUDE_FORMATTER
gl.yformatter = LATITUDE_FORMATTER
gl.xlabel_style = {'size': 15, 'color': 'gray'}
#gl.xlabel_style = {'color': 'gray', 'weight': 'bold'}

plt.title('Masked data plot on contour')
plt.show()

结果图:

enter image description here