Java Math完成平方计算器

时间:2019-03-01 05:43:57

标签: java math calculator algebra

嘿,对于整个编程领域来说,我只是一个正在学习Java计算机科学课程的高中生。我正在尝试用到目前为止的知识来测试自己的能力,并尝试理解事物和实践。所以我试图为某些事情做几个数学计算器。我正在努力完成广场。因此,像(2 + 4x ^ 2)^ 2会变成(4 + 16x + 4x ^ 2)。我的问题是我无法使其完全正常运行,并且代码有点古怪。

import java.util.Scanner;

public class SquaringDoubles {

    public static void main(String[] args) {

        //declaring
        Scanner input = new Scanner(System.in);

        //inputs
        System.out.println("Enter in the double with this format ( A + B )^2");

        System.out.print("A --> ");
        double A = input.nextInt();

        System.out.print("B --> ");
        double B = input.nextInt();
        input.close();

        System.out.println("You're Equation: " + A + " + " + B + "x");

        //Math
        //A + C + B
        double A2 = Math.pow(A, 2);
        double B2 = Math.pow(B, 2);
        double C = 2 * (A * B);

        //final
        System.out.print("You answer: ");
        System.out.println(A2 + " + "+ C + "x" + " + "+ B2+ "x^2");
    }
}

1 个答案:

答案 0 :(得分:1)

插入是将一个公式转换为等价形式的最简单的通用方法

save()

由于存在三个变量(A2,B2,C2),我们需要三个方程来求解系统。 要获得这些方程式,我们可以简单地将我们选择的三个x及其计算出的Y(x)放入所需的形式。并求解方程组。

因此,从本质上讲,我们为所选的三个x计算Y(x)并将其粘贴到公式中。一个可以取任何(定义的)值,但可以使生活更轻松。

所以

X = 0 是第一个候选对象,因为它消除了x的所有内容,并直接为您提供A2。

self.__class__.objects.filter.(pk=self.pk).update(urlhash=urlhash)

x = 1 :您获得

from sklearn.feature_extraction.text import CountVectorizer
    vectorizer = CountVectorizer()

    data=['i am student','the student suffers a lot']
    transformed_data =vectorizer.fit_transform(data)
    vocab= {a: b for a, b in zip(vectorizer.get_feature_names(), np.ravel(transformed_data.sum(axis=0)))}
    print (vocab)

x = -1 :您获得

Y(x) = A2 + B2x + C2(x)^2

消除C2:

Y(0)= C2*(0)^2+B2*(0)+A2 = A2
A2 = Y(0)

最后通过插入C2 + B2 + A2 = Y(1)来计算C2:

 Y(1)= C2*(1)^2+B2*(1)+A2 = C2+B2+A2
  

所以通常来说-对于任何给定的(有效)方程,其形式为A2 + B2·x + C2·x²:

     
      
  • A2 = Y(0)
  •   
  • B2 =(Y(1)-Y(-1))/ 2
  •   
  • C2 = Y(1)-B2 -A2 =(Y(1)+ Y(-1))/ 2-Y(0)
  •   

在您的示例中,由于正方形,Y(1)= Y(-1),所以

Y(-1)= C2*(-1)^2+B2*(-1)+A2= C2-B2+A2

等等

Y(-1)+B2-A2 = Y(1) -B2 -A2
-> 2*B2=Y(1)-Y(-1)
B2=(Y(1)-Y(-1))/2
  

对于(A + B *(x)^ 2)^ 2:

     
      
  • A2 = Y(0)= A ^ 2
  •   
  • B2 = 0
  •   
  • C2 = Y(1)-Y(0)=(A + B)^ 2-A2
  •   

代码:

C2=Y(1) -B2 -A2

我添加了一些注释,以说明发生了什么以及如何与其他方程式类似。