我正在尝试为以下应用创建自动编码器:
from keras.layers import Input, Dense, Conv2D, MaxPooling2D, UpSampling2D
from keras.models import Model
from keras import backend as K
from keras.datasets import mnist
import numpy as np
(x_train, _), (x_test, _) = mnist.load_data()
x_train = x_train.astype('float32') / 255.
x_train = x_train[:100,:,:,]
x_test = x_test.astype('float32') / 255.
x_test = x_train
x_train = np.reshape(x_train, (len(x_train), 28, 28, 1)) # adapt this if using `channels_first` image data format
x_test = np.reshape(x_test, (len(x_test), 28, 28, 1)) # adapt this if using `channels_first` image data format
input_img = Input(shape=(28, 28, 1)) # adapt this if using `channels_first` image data format
x = Conv2D(32, (3, 3), activation='relu', padding='same')(input_img)
x = MaxPooling2D((2, 2), padding='same')(x)
x = Conv2D(32, (3, 3), activation='relu', padding='same')(x)
encoded = MaxPooling2D((2, 2), padding='same')(x)
# at this point the representation is (7, 7, 32)
decoder = Conv2D(32, (3, 3), activation='relu', padding='same')(encoded)
x = UpSampling2D((2, 2))(decoder)
x = Conv2D(32, (3, 3), activation='relu', padding='same')(x)
x = UpSampling2D((2, 2))(x)
decoded = Conv2D(1, (3, 3), activation='sigmoid', padding='same')(x)
autoencoder = Model(input_img, decoded(encoded(input_img)))
autoencoder.compile(optimizer='adadelta', loss='binary_crossentropy')
autoencoder.fit(x_train, x_train,
epochs=10,
batch_size=128,
shuffle=True,
validation_data=(x_test, x_test),
#callbacks=[TensorBoard(log_dir='/tmp/tb', histogram_freq=0, write_graph=False)]
)
如何拆分训练并按训练后的重量进行拆分?
答案 0 :(得分:0)
制作编码器:
private void dataGridView_SelectionChanged(object sender, EventArgs e)
{
foreach (DataGridViewRow row in dataGridView.SelectedRows)
{
string value1 = row.Cells[0].Value.ToString();
string value2 = row.Cells[1].Value.ToString();
//...
}
}
制作解码器:
import requests
from time import sleep
API_KEY = '2captchaapi' # Your 2captcha API KEY
site_key = '2captcha site key' # site-key, read the 2captcha docs on how to get this
url = 'site' # example url
proxy = 'proxy' # example proxy
proxy = {'http': 'http://' + proxy, 'https': 'https://' + proxy}
s = requests.Session()
# here we post site key to 2captcha to get captcha ID (and we parse it here too)
captcha_id = s.post(
"http://2captcha.com/in.php?key={}&method=userrecaptcha&googlekey={}&pageurl={}".format(API_KEY, site_key, url), proxies=proxy).text.split('|')[1]
# then we parse gresponse from 2captcha response
recaptcha_answer = s.get("http://2captcha.com/res.php?key={}&action=get&id={}".format(API_KEY, captcha_id), proxies=proxy).text
print("solving ref captcha...")
while 'CAPCHA_NOT_READY' in recaptcha_answer:
sleep(5)
recaptcha_answer = s.get("http://2captcha.com/res.php?key={}&action=get&id={}".format(API_KEY, captcha_id), proxies=proxy).text
recaptcha_answer = recaptcha_answer.split('|')[1]
print(recaptcha_answer)
payload = {
'signup-form[votes]': '',
'signin-form[subs]': '',
'signin-form[post_referer]': 'site',
'signup-form[step2][hidden_captcha]': '',
'signup-form[details][login]': 'name@gmail.com',
'signup-form[details][profile_name]': 'name1',
'signup-form[details][password]': 'secret44%',
'signup-form[details][password_confirm]': 'secret44%',
'signup-form[details][tos_pp]': 'on',
'signup-form[step2][optional][age]': '24',
'signup-form[step2][optional][sex]': 'Man',
'signup-form[step2][optional][country]': 'france',
'signup-form[step2][optional][language]': 'french',
'signup-form[step2][profilepic][file]': '',
'g-recaptcha-response': recaptcha_answer
}
# then send the post request to the url
response = s.post(url, payload, verify=False)
print(response.text)
制作自动编码器:
input_img = Input(shape=(28, 28, 1))
x = Conv2D(32, (3, 3), activation='relu', padding='same')(input_img)
x = MaxPooling2D((2, 2), padding='same')(x)
x = Conv2D(32, (3, 3), activation='relu', padding='same')(x)
encoded = MaxPooling2D((2, 2), padding='same')(x)
encoder = Model(input_img, encoded)
现在,您可以使用任何方式使用它们。