我希望有人能帮助我。我一直想知道我的数据是如何集群的,为此,我一直按照R-bloggers博客的建议在R中使用k-means和elbow方法。
以下是我的数据的外观示例(datanet
)。我的聚类分析基于前三列ACTIVITY X,ACTIVITY Y和ACTIVITY Z:
ACTIVITY_X ACTIVITY_Y ACTIVITY_Z Event
1: 40 47 62 Vigilance
2: 60 74 95 Head-up
3: 62 63 88 Head-up
4: 60 56 82 Head-up
5: 66 61 90 Head-up
6: 60 53 80 Head-up
我为between_SS/total_SS
获得了k=4
的89.0%的评分,因此我非常有信心将我的数据分为4个类。
现在,我想根据上面的数据示例的“事件”列上的不同标签,是否将我的数据分为4个簇。
我将tsclust()
与fuzzy
类型的集群一起使用,以查看数据如何集群。这是我实现代码的方式:
library(dtwclust)
trainset1 <- datanet[, !"Event"]
train = as.matrix(trainset1, byrow = T, ncol=3)
head(train)
train_clust<- tsclust(train, k = 4L, type = "fuzzy")
plot(train_clust@cluster)
plot(train_clust)
最后一个命令plot(train_clust)
使我能够找到不同簇的各个质心:
plot(train_clust@cluster)
显示每个数据点属于哪个群集:
但是,是否有办法知道每个数据点代表“事件”列中的哪个标签?如前所述,我将tsclust()
的数据作为train
矩阵输入,仅包括数据的前三列(如上所示)(因为它们是带有值的列)。
如何实现第三列"Event"
,以便每个数据点都具有关联的标签(抬头,警惕等)?
希望这个问题很有趣,因为我是R的新手。感谢您的投入!
P.S。如对评论所问:
> dput(datanet)
structure(list(ACTIVITY_X = c(40L, 60L, 62L, 60L, 66L, 60L, 57L,
54L, 52L, 93L, 80L, 14L, 52L, 61L, 51L, 40L, 20L, 21L, 5L, 53L,
48L, 73L, 73L, 21L, 29L, 63L, 59L, 57L, 51L, 53L, 67L, 72L, 74L,
70L, 60L, 74L, 85L, 77L, 68L, 58L, 80L, 34L, 45L, 34L, 60L, 75L,
62L, 66L, 51L, 53L, 48L, 62L, 62L, 57L, 5L, 1L, 12L, 23L, 5L,
4L, 0L, 13L, 45L, 44L, 31L, 68L, 88L, 43L, 70L, 18L, 83L, 71L,
67L, 75L, 74L, 49L, 90L, 44L, 64L, 57L, 22L, 29L, 52L, 37L, 32L,
120L, 45L, 22L, 54L, 30L, 9L, 27L, 14L, 3L, 29L, 12L, 10L, 61L,
60L, 29L, 15L, 7L, 6L, 0L, 2L, 0L, 4L, 1L, 7L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 1L, 15L, 23L, 49L, 46L, 8L, 31L, 45L, 60L,
31L, 37L, 61L, 52L, 51L, 38L, 86L, 60L, 41L, 43L, 40L, 42L, 42L,
48L, 64L, 71L, 59L, 0L, 11L, 27L, 12L, 3L, 0L, 0L, 8L, 0L, 21L,
6L, 2L, 7L, 4L, 3L, 3L, 46L, 46L, 59L, 53L, 37L, 44L, 39L, 49L,
37L, 47L, 17L, 36L, 32L, 33L, 26L, 12L, 8L, 25L, 31L, 35L, 27L,
27L, 24L, 17L, 35L, 39L, 28L, 54L, 5L, 0L, 0L, 0L, 0L, 0L, 17L,
22L, 25L, 12L, 0L, 5L, 41L, 51L, 66L, 39L, 32L, 53L, 43L, 40L,
44L, 45L, 48L, 51L, 41L, 45L, 39L, 46L, 59L, 31L, 5L, 24L, 18L,
5L, 15L, 13L, 0L, 12L, 26L, 0L), ACTIVITY_Y = c(47L, 74L, 63L,
56L, 61L, 53L, 40L, 41L, 49L, 32L, 54L, 13L, 39L, 99L, 130L,
38L, 14L, 6L, 5L, 94L, 96L, 38L, 43L, 29L, 47L, 66L, 47L, 38L,
31L, 36L, 35L, 38L, 72L, 54L, 44L, 45L, 51L, 80L, 48L, 39L, 85L,
42L, 39L, 37L, 75L, 36L, 45L, 32L, 35L, 41L, 26L, 99L, 163L,
124L, 0L, 0L, 24L, 37L, 0L, 6L, 0L, 29L, 29L, 26L, 27L, 54L,
147L, 82L, 98L, 12L, 83L, 97L, 104L, 128L, 81L, 42L, 102L, 60L,
79L, 58L, 15L, 14L, 75L, 75L, 40L, 130L, 40L, 13L, 54L, 42L,
7L, 10L, 3L, 0L, 15L, 8L, 7L, 75L, 55L, 26L, 18L, 1L, 13L, 0L,
0L, 0L, 1L, 0L, 4L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 5L,
17L, 45L, 38L, 10L, 31L, 52L, 36L, 24L, 65L, 97L, 45L, 59L, 49L,
92L, 51L, 34L, 21L, 20L, 29L, 28L, 22L, 32L, 30L, 86L, 0L, 4L,
15L, 7L, 4L, 0L, 0L, 0L, 0L, 11L, 3L, 0L, 1L, 3L, 1L, 0L, 72L,
62L, 98L, 55L, 26L, 39L, 28L, 81L, 20L, 52L, 12L, 48L, 24L, 40L,
30L, 5L, 6L, 44L, 40L, 37L, 33L, 26L, 17L, 14L, 39L, 27L, 28L,
67L, 0L, 0L, 0L, 0L, 0L, 0L, 10L, 12L, 14L, 7L, 0L, 2L, 39L,
67L, 74L, 28L, 23L, 57L, 34L, 36L, 36L, 37L, 46L, 43L, 73L, 65L,
31L, 64L, 128L, 17L, 3L, 12L, 17L, 0L, 9L, 7L, 0L, 7L, 17L, 0L
), ACTIVITY_Z = c(62L, 95L, 88L, 82L, 90L, 80L, 70L, 68L, 71L,
98L, 97L, 19L, 65L, 116L, 140L, 55L, 24L, 22L, 7L, 108L, 107L,
82L, 85L, 36L, 55L, 91L, 75L, 69L, 60L, 64L, 76L, 81L, 103L,
88L, 74L, 87L, 99L, 111L, 83L, 70L, 117L, 54L, 60L, 50L, 96L,
83L, 77L, 73L, 62L, 67L, 55L, 117L, 174L, 136L, 5L, 1L, 27L,
44L, 5L, 7L, 0L, 32L, 54L, 51L, 41L, 87L, 171L, 93L, 120L, 22L,
117L, 120L, 124L, 148L, 110L, 65L, 136L, 74L, 102L, 81L, 27L,
32L, 91L, 84L, 51L, 177L, 60L, 26L, 76L, 52L, 11L, 29L, 14L,
3L, 33L, 14L, 12L, 97L, 81L, 39L, 23L, 7L, 14L, 0L, 2L, 0L, 4L,
1L, 8L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 1L, 16L, 29L, 67L,
60L, 13L, 44L, 69L, 70L, 39L, 75L, 115L, 69L, 78L, 62L, 126L,
79L, 53L, 48L, 45L, 51L, 50L, 53L, 72L, 77L, 104L, 0L, 12L, 31L,
14L, 5L, 0L, 0L, 8L, 0L, 24L, 7L, 2L, 7L, 5L, 3L, 3L, 85L, 77L,
114L, 76L, 45L, 59L, 48L, 95L, 42L, 70L, 21L, 60L, 40L, 52L,
40L, 13L, 10L, 51L, 51L, 51L, 43L, 37L, 29L, 22L, 52L, 47L, 40L,
86L, 5L, 0L, 0L, 0L, 0L, 0L, 20L, 25L, 29L, 14L, 0L, 5L, 57L,
84L, 99L, 48L, 39L, 78L, 55L, 54L, 57L, 58L, 66L, 67L, 84L, 79L,
50L, 79L, 141L, 35L, 6L, 27L, 25L, 5L, 17L, 15L, 0L, 14L, 31L,
0L), Event = c("Head-up", "Head-up", "Head-up", "Head-up", "Head-up",
"Head-up", "Head-up", "Head-up", "Head-up", "Moving", "Moving",
"Head-up", "Head-up", "Head-up", "Head-up", "Head-up", "Head-up",
"Head-up", "Moving", "Head-up", "Head-up", "Head-up", "Head-up",
"Head-up", "Head-up", "Head-up", "Head-up", "Head-up", "Head-up",
"Head-up", "Head-up", "Head-up", "Head-up", "Head-up", "Head-up",
"Head-up", "Head-up", "Head-up", "Head-up", "Head-up", "Head-up",
"Head-up", "Head-up", "Head-up", "Head-up", "Head-up", "Head-up",
"Head-up", "Head-up", "Head-up", "Head-up", "Head-up", "Head-up",
"Head-up", "Grazing", "Grazing", "Moving", "Moving", "Grazing",
"Grazing", "Grazing", "Moving", "Moving", "Grazing", "Grazing",
"Grazing", "Grazing", "Grooming", "Grooming", "Grazing", "Grazing",
"Grooming", "Head-up", "Head-up", "Vigilance", "Grazing", "Grazing",
"Grazing", "Grazing", "Vigilance", "Grazing", "Grazing", "Grazing",
"Grazing", "Moving", "Grazing", "Grazing", "Grazing", "Grazing",
"Grazing", "Moving", "Vigilance", "Vigilance", "Vigilance", "Head-up",
"Head-up", "Head-up", "Head-up", "Grazing", "Grazing", "Grazing",
"Grazing", "Grazing", "Grazing", "Grazing", "Grazing", "Grazing",
"Grazing", "Grazing", "Head-up", "Head-up", "Head-up", "Head-up",
"Head-up", "Head-up", "Head-up", "Head-up", "Head-up", "Head-up",
"Head-up", "Grazing", "Grazing", "Grazing", "Grazing", "Grazing",
"Grooming", "Grazing", "Head-up", "Head-up", "Head-up", "Head-up",
"Head-up", "Head-up", "Head-up", "Head-up", "Head-up", "Head-up",
"Head-up", "Head-up", "Head-up", "Moving", "Moving", "Vigilance",
"Vigilance", "Grazing", "Head-up", "Head-up", "Head-up", "Head-up",
"Head-up", "Moving", "Grazing", "Head-up", "Head-up", "Head-up",
"Head-up", "Head-up", "Head-up", "Head-up", "Head-up", "Head-up",
"Head-up", "Head-up", "Head-up", "Head-up", "Head-up", "Head-up",
"Head-up", "Head-up", "Head-up", "Head-up", "Head-up", "Head-up",
"Head-up", "Head-up", "Head-up", "Head-up", "Head-up", "Grazing",
"Grazing", "Grazing", "Grazing", "Head-up", "Head-up", "Grazing",
"Head-up", "Vigilance", "Head-up", "Head-up", "Head-up", "Moving",
"Head-up", "Head-up", "Head-up", "Head-up", "Head-up", "Head-up",
"Head-up", "Head-up", "Head-up", "Head-up", "Head-up", "Head-up",
"Head-up", "Head-up", "Head-up", "Head-up", "Head-up", "Head-up",
"Head-up", "Head-up", "Head-up", "Head-up", "Head-up", "Head-up",
"Head-up", "Head-up", "Head-up", "Head-up", "Head-up", "Head-up",
"Head-up", "Head-up", "Head-up", "Head-up", "Head-up", "Head-up",
"Vigilance")), row.names = c(NA, -228L), class = c("data.table",
"data.frame"), .internal.selfref = <pointer: 0x00000000051e1ef0>)
答案 0 :(得分:1)
您不熟悉用于执行集群操作的软件包,因此我很有趣地弄清楚了如何从中提取数据。这是我的操作方式:
DateTime dt = new DateTime("38876,588587963");
我强烈建议您检阅library(tidyverse) # This is a large package with many data manipulation functions
library(dtwclust)
trainset1 <- datanet %>%
select(-Event)
train <- as.matrix(trainset1, byrow = T, ncol=3)
train_clust <- tsclust(train, k = 4L, type = "fuzzy")
clusters <- tibble(cluster = c(train_clust@cluster))
combined_set <- bind_cols(datanet, clusters)
combined_set %>%
# I find the ggplot2 package much better for graphing than the base package
ggplot(aes(ACTIVITY_X, ACTIVITY_Y, color = as.factor(cluster), shape = Event)) +
geom_point()
,以全面了解数据操作和数据科学。查看此免费电子书:。