我试图在matplotlib中绘制2D(无效)效率,基本上,我需要两个直方图的比率。我正在使用熊猫DF填充它们:
X_arr = np.array(df['X'])
Y_arr = np.array(df['Y'])
Xeff_arr = np.array(df['X'][(df['condition'] == 1)]
Yeff_arr = np.array(df['Y'][(df['condition'] == 1)]
plt.figure()
denom_histo, xedges, yedges = np.histogram2d(Y_arr, X_arr, bins=(100, 100))
eff_histo, xedges, yedges = np.histogram2d(Yeff_arr, Xeff_arr, bins=(100, 100), weights=-1)
ones, xedges, yedges = np.histogram2d(np.array(100*[1]), np.array(100*[1]), bins=(100, 100))
ineff_histo = ones - eff_histo
ineff_histo = ineff_histo / denom_histo
plt.show()
我需要效率低下,所以我用“ 1-(data_passing_condition)/(all_data)”进行计算。这样做还可以防止被零除。
但是我遇到了错误,例如“ ValueError:对象深度不足以容纳所需数组”
您能告诉我在matplot中处理2D绘图的最佳方法是什么吗?
欢呼
答案 0 :(得分:0)
经过一番修补后,我发现此解决方案有效:
def plot_eff2D(df):
dfe = df[(df['Condition']==1)]
x = np.array(df['X'])
y = np.array(df['Y'])
xe = np.array(dfe['X'])
ye = np.array(dfe['Y'])
fig = plt.figure()
plt.title('Inefficiency map', fontsize=16)
den, yedges, xedges = np.histogram2d(x, y, bins=100)
num, _, _ = np.histogram2d(xe, ye, bins=(yedges, xedges))
H = (den - num)/den # 1-eff = inefficiency
img = plt.imshow(H, interpolation='nearest', origin='low', vmin=0, vmax=0.2, extent=[xedges[0], xedges[-1], yedges[0], yedges[-1]])
fig.colorbar(img, fraction=0.025, pad=0.04) # above plot H
plt.tight_layout()