问题
我想知道node.js中与该Python代码等效的内容:
from keras.preprocessing import image
from PIL import Image
from keras.applications.resnet50 import preprocess_input
raw_img = image.load_img("some/path").resize((224, 224), Image.NEAREST)
img = preprocess_input(image.img_to_array(raw_img))
上下文
我将Keras的ResNet50模型上传到SageMaker端点。我可以使用以下代码从Python调用它:
import json
import boto3
import numpy as np
import io
client = boto3.client('runtime.sagemaker')
from keras.preprocessing import image
from PIL import Image
from keras.applications.resnet50 import preprocess_input
raw_img = image.load_img("some/path").resize((224, 224), Image.NEAREST)
img = preprocess_input(image.img_to_array(raw_img))
response = client.invoke_endpoint(
EndpointName="SAGEMAKER_ENDPOINT_NAME",
Body=json.dumps({ "instances": [ img.tolist() ] }),
ContentType="application/json"
)
现在我需要在node.js中执行相同的操作。我想出了如何使用aws-sdk
到达终点:
import * as aws from 'aws-sdk';
const sageMaker = new aws.SageMakerRuntime({
region: 'ap-northeast-1'
});
sageMaker.invokeEndpoint({
EndpointName: endpointName,
Body: input,
ContentType: "application/json",
}, (error, res) => {
if (error) { return reject(error); }
// YEAH
})
但是我无法弄清楚如何生成input
json,也就是这个python代码段的等效内容:
from keras.preprocessing import image
from PIL import Image
from keras.applications.resnet50 import preprocess_input
raw_img = image.load_img("some/path").resize((224, 224), Image.NEAREST)
img = preprocess_input(image.img_to_array(raw_img))
有没有实现相同目标的库,还是我需要重新发明轮子?
答案 0 :(得分:0)
答案是:我不得不重新设计轮子。 这是到达端点的工作需要(对于ResNet50网络而言):
这是我最终得到的代码(它使用打字稿):
import * as tf from '@tensorflow/tfjs';
interface INormalizationOptions {
numberOfChannels: number;
imageSize: number;
}
interface IImagePixels {
width: number, height: number, numberOfChannels: number,
pixels: ndarray
}
export async function preprocessImage(filePath: string, o: INormalizationOptions) {
const img = await getImagePixels(filePath);
// Converts the ndarray to tensor, while ignoring extra channels
const rawTensor = imageToTensor(img, o);
console.log(`Size of image: ${img.width} ${img.height}`)
console.log(`Number of color components actually read: ${img.pixels.data.length} (expected: ${img.width*img.height*img.numberOfChannels})`)
console.log(`Number of pixels: ${img.width*img.height}`);
// Normalizes the Pixels from [0,255] to [-1,1]
const normalizedTensor: tf.Tensor3D = rawTensor.toFloat().sub(255/2).div(255/2);
// Resizes the inage Size to square of IMAGE_SIZE
const alignCorner = true;
const resizedInput = tf.image.resizeBilinear(
normalizedTensor,
[o.imageSize, o.imageSize],
alignCorner
)
const reshapedTensor: tf.Tensor3D = resizedInput.reshape([ o.imageSize, o.imageSize, o.numberOfChannels ])
return tensor3dToArray3d(reshapedTensor);
}
这使用了一些实用程序功能。
getImagePixels
async function getImagePixels(filePath: string) {
const _getPixels = require('get-pixels');
return new Promise<IImagePixels>( (resolve, reject) => {
_getPixels( filePath, (error: Error | null, pixels: ndarray) => {
if (error) { return reject(error); }
resolve({
width: pixels.shape[0],
height: pixels.shape[1],
numberOfChannels: pixels.shape[2],
pixels: pixels
})
});
})
}
imageToTensor
import ndarray from 'ndarray';
function imageToTensor(img: IImagePixels, o: INormalizationOptions) {
const rawTensorValues = new Int32Array(img.width * img.height * o.numberOfChannels);
const rawTensor = tf.tensor3d(rawTensorValues, [ img.width, img.height, o.numberOfChannels ], 'int32');
// This only uses the first CHANNEL_ND
for (let row=0; row<img.height; row++) {
for (let col=0; col<img.width; col++){
for (let channel =0; channel<o.numberOfChannels; channel++) {
const pixel = img.pixels.get(row,col,channel);
if (!isNumeric(pixel)) { throw new Error(`Bad pixel: ${pixel}`) }
const offset = row * img.width * img.numberOfChannels + col * img.numberOfChannels + channel
rawTensorValues[offset] = pixel;
}
}
}
return rawTensor;
}
tensor3dToArray3d
async function tensor3dToArray3d(t: tf.Tensor3D) {
const dataAs3dArray = new Array<number[][]>();
const data = await t.data();
const expectedSizeOfArray = t.shape[0] * t.shape[1] * t.shape[2];
console.log(`Got vector of size ${t.shape[0]} ${t.shape[1]} ${t.shape[2]}, that is, ${expectedSizeOfArray} data`);
console.log(`Actual size of data: ${data.length}`);
for (let i=0; i<t.shape[0]; i++) {
dataAs3dArray[i] = new Array<number[]>();
for (let j=0; j<t.shape[1]; j++) {
dataAs3dArray[i][j] = new Array<number>();
for (let k=0; k<t.shape[2]; k++ ) {
const ijk =
i * t.shape[0] * t.shape[1] * t.shape[2]
+ j * t.shape[1] * t.shape[2]
+ k;
const datum = Math.random(); // Number( data[ijk] );
if (!isNumeric(datum)) { throw new Error(`Invalid datum at ${i},${j},${k}: ${datum}`) }
dataAs3dArray[i][j][k] = datum;
}
}
}
return dataAs3dArray;
}
function isNumeric(n: any) {
return !isNaN(parseFloat(n)) && isFinite(n);
}