我有一个像这样的scala数据框:
+--------+--------------------+
| uid| recommendations|
+--------+--------------------+
|41344966|[[2174, 4.246965E...|
|41345063|[[2174, 0.0015455...|
|41346177|[[2996, 4.137125E...|
|41349171|[[2174, 0.0010590...|
df: org.apache.spark.sql.DataFrame = [uid: int, recommendations: array<struct<iid:int,rating:float>>]
我想将其转换为scala数据集,以利用添加的功能。但是,我是scala的新手,并且不清楚一列包含许多数据类型时如何编写转换类。这就是我所拥有的:
val query = "SELECT * FROM myTable"
val df = spark.sql(query)
case class userRecs (uid: String, recommendations: Array[Int])
val ds = df.as[userRecs]
我得到的错误是:
org.apache.spark.sql.AnalysisException: cannot resolve 'CAST(lambdavariable(MapObjects_loopValue47, MapObjects_loopIsNull47, StructField(iid,IntegerType,true), StructField(rating,FloatType,true), true) AS INT)' due to data type mismatch: cannot cast struct<iid:int,rating:float> to int;
我应该如何重写我的课程?
答案 0 :(得分:1)
解决方案是创建一个我的其他班级可以使用的班级:
case class productScore (iid: Int, rating: Float)
case class userRecs (uid: Int, recommendations: Array[productScore])
val ds = df.as[userRec]