我有这样的csv:
Art Category LEVEL 2 LEVEL 3 LEVEL 4 LEVEL 5 Location
0 PRINTMAKING VISUAL CONTEMPORARY 2D NaN NaN NaN
1 PAINTING VISUAL CONTEMPORARY 2D NaN NaN NaN
2 AERIAL VISUAL CONTEMPORARY 2D PHOTOGRAPHY AERIAL NaN
3 WILDLIFE VISUAL CONTEMPORARY 2D PHOTOGRAPHY WILDLIFE NaN
4 NATURE VISUAL CONTEMPORARY 2D PHOTOGRAPHY NATURE NaN
艺术和类别将在那里,但是从l1到l6的级别可以为空。 我想要达到的目标是这样的:
art: PRINTMAKING
category: VISUAL
tags: [CONTEMPORARY, 2D]
关卡基本上是用于存储在数组中的特定艺术的标签。
我是python的新手,到目前为止,我已经编写了以下代码。我该如何做到这一点。
import pandas as pd
import json
data = pd.read_excel("C:\\Users\\Desktop\\visual.xlsx")
rec = {}
rec['art'] = data['Art']
rec['category'] = data['Category']
rec['tags'] = data['LEVEL 2'] + ',' + data['LEVEL 3'] + ',' + data['LEVEL 4'] + ',' + data['LEVEL 5']
我想这不是正确的方法。
答案 0 :(得分:2)
用于将tags
的值转换为没有NaN
的列表使用:
df['tags'] = df.filter(like='LEVEL').apply(lambda x: x.dropna().tolist(), axis=1)
#alternative, should be faster
#df['tags'] = [[y for y in x if isinstance(y, str)] for x in
# df.filter(like='LEVEL').values]
d = df[['Art','Category','tags']].to_dict(orient='records')
[{
'Art': 'PRINTMAKING',
'Category': 'VISUAL',
'tags': ['CONTEMPORARY', '2D']
}, {
'Art': 'PAINTING',
'Category': 'VISUAL',
'tags': ['CONTEMPORARY', '2D']
}, {
'Art': 'AERIAL',
'Category': 'VISUAL',
'tags': ['CONTEMPORARY', '2D', 'PHOTOGRAPHY', 'AERIAL']
}, {
'Art': 'WILDLIFE',
'Category': 'VISUAL',
'tags': ['CONTEMPORARY', '2D', 'PHOTOGRAPHY', 'WILDLIFE']
}, {
'Art': 'NATURE',
'Category': 'VISUAL',
'tags': ['CONTEMPORARY', '2D', 'PHOTOGRAPHY', 'NATURE']
}]
答案 1 :(得分:1)
df
Art Category LEVEL 2 LEVEL.1 3 LEVEL.2 4 \
0 0 PRINTMAKING VISUAL CONTEMPORARY 2D NaN NaN NaN
1 1 PAINTING VISUAL CONTEMPORARY 2D NaN NaN NaN
2 2 AERIAL VISUAL CONTEMPORARY 2D PHOTOGRAPHY AERIAL NaN
3 3 WILDLIFE VISUAL CONTEMPORARY 2D PHOTOGRAPHY WILDLIFE NaN
4 4 NATURE VISUAL CONTEMPORARY 2D PHOTOGRAPHY NATURE NaN
LEVEL.3 5 Location
0 NaN NaN NaN
1 NaN NaN NaN
2 NaN NaN NaN
3 NaN NaN NaN
4 NaN NaN NaN
df = df.set_index(['Art','Category']).apply(lambda x: [','.join([str(a) for a in x.values if str(a) != 'nan'])], axis=1)
print(df.reset_index(name='tags'))
Art Category tags
0 0 PRINTMAKING [VISUAL,CONTEMPORARY,2D]
1 1 PAINTING [VISUAL,CONTEMPORARY,2D]
2 2 AERIAL [VISUAL,CONTEMPORARY,2D,PHOTOGRAPHY,AERIAL]
3 3 WILDLIFE [VISUAL,CONTEMPORARY,2D,PHOTOGRAPHY,WILDLIFE]
4 4 NATURE [VISUAL,CONTEMPORARY,2D,PHOTOGRAPHY,NATURE]
要听写
df.to_dict(orient='records')
输出
[{'Art': 0, 'Category': 'PRINTMAKING', 'tags': ['VISUAL,CONTEMPORARY,2D']},
{'Art': 1, 'Category': 'PAINTING', 'tags': ['VISUAL,CONTEMPORARY,2D']},
{'Art': 2,
'Category': 'AERIAL',
'tags': ['VISUAL,CONTEMPORARY,2D,PHOTOGRAPHY,AERIAL']},
{'Art': 3,
'Category': 'WILDLIFE',
'tags': ['VISUAL,CONTEMPORARY,2D,PHOTOGRAPHY,WILDLIFE']},
{'Art': 4,
'Category': 'NATURE',
'tags': ['VISUAL,CONTEMPORARY,2D,PHOTOGRAPHY,NATURE']}]
答案 2 :(得分:0)
您应该结合使用pd.Series.str.cat
和functools.reduce
来串联所有标签:
df = pd.DataFrame({
'art': ['a1', 'a2', 'a3'],
'category': ['c1', 'c2', 'c3'],
'l1': ['abc', '', 'lmn'],
'l2': ['def', 'xyz', 'qwe'],
})
from functools import reduce
tag_cols = [x for x in df.columns if x not in ['art', 'category']]
df['tags'] = reduce(lambda a, b: df[a].str.cat(df[b], sep=','),
tag_cols).apply(lambda x: [t for t in x.split(",") if t != ''])
d = df.to_dict(orient='records')
输出
[{'art': 'a1',
'category': 'c1',
'l1': 'abc',
'l2': 'def',
'tags': ['abc', 'def']},
{'art': 'a2', 'category': 'c2', 'l1': '', 'l2': 'xyz', 'tags': ['xyz']},
{'art': 'a3',
'category': 'c3',
'l1': 'lmn',
'l2': 'qwe',
'tags': ['lmn', 'qwe']}]
答案 3 :(得分:0)
这可能会解决您的问题:
from io import StringIO
import csv
# help(csv)
categories="""art,category, l1, l2, l3, l4, l5, l6
a1,c1,abc,def
a2,c2,,,,xyz,pqr,
a3,c3,lmn,,,qwe,rtg,
"""
f=StringIO(categories)
rows=csv.DictReader(f,delimiter=',')
data=[]
for row in rows:
# print(row)
d={
"cateory":row.get("category",''),
"art":row.get("art",'')
}
try:
del row["category"]
del row["art"]
except KeyError as ke:
print(ke)
# print(row)
d["levels"]=list(row.values())
print(d)
示例输出:
{'cateory': 'c1', 'art': 'a1', 'levels': ['abc', 'def', None, None, None, None]}
{'cateory': 'c2', 'art': 'a2', 'levels': ['', '', '', 'xyz', 'pqr', '']}
{'cateory': 'c3', 'art': 'a3', 'levels': ['lmn', '', '', 'qwe', 'rtg', '']}