如何读取Scala序列化堆栈(从Spark)?

时间:2019-02-27 19:07:57

标签: scala apache-spark

我如何读取序列化堆栈?

我正在Spark之上构建分布式NLP应用程序。我会定期遇到这些NotSerializable异常,并总是弄乱它们的处理方式。但是,我从未找到有关序列化堆栈中所有含义的有效文档。

如何在Scala中读取伴随NotSerializable错误的序列化堆栈?如何确定导致错误的类或对象?堆栈中的“字段”,“对象”,“ writeObject”和“ writeReplace”字段的意义是什么?

下面是一个示例:

Caused by: java.io.NotSerializableException: MyPackage.testing.PreprocessTest$$typecreator1$1
Serialization stack:
        - object not serializable (class: MyPackage.testing.PreprocessTest$$typecreator1$1, value: MyPackage.testing.PreprocessTest$$typecreator1$1@27f6854b)
        - writeObject data (class: scala.reflect.api.SerializedTypeTag)
        - object (class scala.reflect.api.SerializedTypeTag, scala.reflect.api.SerializedTypeTag@4a571516)
        - writeReplace data (class: scala.reflect.api.SerializedTypeTag)
        - object (class scala.reflect.api.TypeTags$TypeTagImpl, TypeTag[String])
        - field (class: MyPackage.package$$anonfun$deserializeMaps$1, name: evidence$1$1, type: interface scala.reflect.api.TypeTags$TypeTag)
        - object (class MyPackage.package$$anonfun$deserializeMaps$1, <function1>)
        - field (class: MyPackage.package$$anonfun$deserializeMaps$1$$anonfun$apply$4, name: $outer, type: class MyPackage.package$$anonfun$deserializeMaps$1)
        - object (class MyPackage.package$$anonfun$deserializeMaps$1$$anonfun$apply$4, <function1>)
        - field (class: MyPackage.package$$anonfun$deserializeMaps$1$$anonfun$apply$4$$anonfun$apply$5, name: $outer, type: class MyPackage.package$$anonfun$deserializeMaps$1$$anonfun$apply$4)
        - object (class MyPackage.package$$anonfun$deserializeMaps$1$$anonfun$apply$4$$anonfun$apply$5, <function1>)
        - field (class: org.apache.spark.sql.catalyst.expressions.ScalaUDF$$anonfun$2, name: func$2, type: interface scala.Function1)
        - object (class org.apache.spark.sql.catalyst.expressions.ScalaUDF$$anonfun$2, <function1>)
        - field (class: org.apache.spark.sql.catalyst.expressions.ScalaUDF, name: f, type: interface scala.Function1)
        - object (class org.apache.spark.sql.catalyst.expressions.ScalaUDF, UDF(UDF(tokenMap#149)))
        - field (class: org.apache.spark.sql.catalyst.expressions.Alias, name: child, type: class org.apache.spark.sql.catalyst.expressions.Expression)
        - object (class org.apache.spark.sql.catalyst.expressions.Alias, UDF(UDF(tokenMap#149)) AS tokenMap#3131)
        - writeObject data (class: scala.collection.immutable.$colon$colon)
        - object (class scala.collection.immutable.$colon$colon, List(id#148, UDF(UDF(tokenMap#149)) AS tokenMap#3131, UDF(UDF(bigramMap#150)) AS bigramMap#3132, sentences#151, se_sentence_count#152, se_word_count#153, se_subjective_count#154, se_objective_count#155, se_document_sentiment#156, UDF(UDF(se_category#157)) AS se_category#3133))
        - field (class: org.apache.spark.sql.execution.Project, name: projectList, type: interface scala.collection.Seq)
        - object (class org.apache.spark.sql.execution.Project, Project [id#148,UDF(UDF(tokenMap#149)) AS tokenMap#3131,UDF(UDF(bigramMap#150)) AS bigramMap#3132,sentences#151,se_sentence_count#152,se_word_count#153,se_subjective_count#154,se_objective_count#155,se_document_sentiment#156,UDF(UDF(se_category#157)) AS se_category#3133]
+- InMemoryColumnarTableScan [se_sentence_count#152,bigramMap#150,id#148,tokenMap#149,se_word_count#153,sentences#151,se_document_sentiment#156,se_subjective_count#154,se_category#157,se_objective_count#155], InMemoryRelation [id#148,tokenMap#149,bigramMap#150,sentences#151,se_sentence_count#152,se_word_count#153,se_subjective_count#154,se_objective_count#155,se_document_sentiment#156,se_category#157], true, 10000, StorageLevel(true, true, false, true, 1), Union, None
)
        - field (class: org.apache.spark.sql.execution.ConvertToSafe, name: child, type: class org.apache.spark.sql.execution.SparkPlan)
        - object (class org.apache.spark.sql.execution.ConvertToSafe, ConvertToSafe
+- Project [id#148,UDF(UDF(tokenMap#149)) AS tokenMap#3131,UDF(UDF(bigramMap#150)) AS bigramMap#3132,sentences#151,se_sentence_count#152,se_word_count#153,se_subjective_count#154,se_objective_count#155,se_document_sentiment#156,UDF(UDF(se_category#157)) AS se_category#3133]
   +- InMemoryColumnarTableScan [se_sentence_count#152,bigramMap#150,id#148,tokenMap#149,se_word_count#153,sentences#151,se_document_sentiment#156,se_subjective_count#154,se_category#157,se_objective_count#155], InMemoryRelation [id#148,tokenMap#149,bigramMap#150,sentences#151,se_sentence_count#152,se_word_count#153,se_subjective_count#154,se_objective_count#155,se_document_sentiment#156,se_category#157], true, 10000, StorageLevel(true, true, false, true, 1), Union, None
)
        - field (class: org.apache.spark.sql.execution.ConvertToSafe$$anonfun$2, name: $outer, type: class org.apache.spark.sql.execution.ConvertToSafe)
        - object (class org.apache.spark.sql.execution.ConvertToSafe$$anonfun$2, <function1>)

0 个答案:

没有答案