我有一个具有以下架构的spark数据框:
root
|-- product_id: integer (nullable = true)
|-- stock: integer (nullable = true)
|-- start_date: date (nullable = true)
|-- end_date: date (nullable = true)
尝试通过以下方式将其传递到pandas_udf
或转换为熊猫数据框时:
pandas_df = spark_df.toPandas()
它返回此错误:
AttributeError Traceback (most recent call last)
<ipython-input-86-4bccc6e8422d> in <module>()
10 # spark_df.printSchema()
11
---> 12 pandas_df = spark_df.toPandas()
/home/.../lib/python2.7/site-packages/pyspark/sql/dataframe.pyc in toPandas(self)
2123 table = pyarrow.Table.from_batches(batches)
2124 pdf = table.to_pandas()
-> 2125 pdf = _check_dataframe_convert_date(pdf, self.schema)
2126 return _check_dataframe_localize_timestamps(pdf, timezone)
2127 else:
/home.../lib/python2.7/site-packages/pyspark/sql/types.pyc in _check_dataframe_convert_date(pdf, schema)
1705 """
1706 for field in schema:
-> 1707 pdf[field.name] = _check_series_convert_date(pdf[field.name], field.dataType)
1708 return pdf
1709
/home/.../lib/python2.7/site-packages/pyspark/sql/types.pyc in _check_series_convert_date(series, data_type)
1690 """
1691 if type(data_type) == DateType:
-> 1692 return series.dt.date
1693 else:
1694 return series
/home/.../lib/python2.7/site-packages/pandas/core/generic.pyc in __getattr__(self, name)
5061 if (name in self._internal_names_set or name in self._metadata or
5062 name in self._accessors):
-> 5063 return object.__getattribute__(self, name)
5064 else:
5065 if self._info_axis._can_hold_identifiers_and_holds_name(name):
/home/.../lib/python2.7/site-packages/pandas/core/accessor.pyc in __get__(self, obj, cls)
169 # we're accessing the attribute of the class, i.e., Dataset.geo
170 return self._accessor
--> 171 accessor_obj = self._accessor(obj)
172 # Replace the property with the accessor object. Inspired by:
173 # http://www.pydanny.com/cached-property.html
/home/.../lib/python2.7/site-packages/pandas/core/indexes/accessors.pyc in __new__(cls, data)
322 pass # we raise an attribute error anyway
323
--> 324 raise AttributeError("Can only use .dt accessor with datetimelike "
325 "values")
AttributeError: Can only use .dt accessor with datetimelike values
如果从spark数据框中删除了日期字段,则转换将正常进行。
我检查了数据是否不包含任何null,但也很高兴知道如何处理这些null。
我在使用python2.7和:
答案 0 :(得分:0)
看起来像个错误。 pyarrow == 0.12.1和pyarrow == 0.12.0有相同的问题。将spark数据框列强制转换为TIMESTAMP对我来说有用。
spark.sql('SELECT CAST(date_column as TIMESTAMP) FROM foo')
还回滚到pyarrow == 0.11.0可以解决此问题。 (我的python是3.7.1和pandas 0.24.2)
答案 1 :(得分:0)
根据Jira在Spark 3中修复的问题。作为一种解决方法,您可以考虑将date列转换为timestamp(这与pandas datetime类型更一致)。
cell(0, 1)
在Pyspark 2.4.4中进行了测试
答案 2 :(得分:0)
这对我有用:
import pyspark.sql.functions as f
spark_df = spark_df.withColumn('start_date', f.to_timestamp(f.col('start_date')))
spark_df = spark_df.withColumn('end_date', f.to_timestamp(f.col('end_date')))
pandas_df = spark_df.toPandas()