Python,球形图-颜色缩放

时间:2019-02-27 10:54:08

标签: python matplotlib colors spherical-coordinate

我对python很陌生。在过去的两天里,我一直在尝试找出如何使用matplotlib缩放3d图(天线辐射图)的颜色。看起来缩放比例在xyz轴之一上起作用,但是当缩放比例从原点(半径)开始时无效。任何帮助都非常感谢。

这不是我的代码,但是我发现它非常有用。

这是代码: -从Excel文档中读取值 -如您所见,我正在尝试使用此命令“ colors   = plt.cm.jet((R)/(Rmax))”,但无法正常工作。

            import pandas as pd
            import numpy as np
            import matplotlib.pyplot as plt
            import mpl_toolkits.mplot3d.axes3d as axes3d

            # Read data file and plot
            df = pd.read_csv('EIRP_Data.csv') #henter data fra Excel

            theta1d = df['Theta']                  
            theta1d = np.array(theta1d);
            theta2d = theta1d.reshape([37,73]) #"Theta" kolonen blir hentet ut, satt i numpy array og gjort om til 2d array

            phi1d = df['Phi']
            phi1d = np.array(phi1d);
            phi2d = phi1d.reshape([37,73]) #"Phi" kolonen blir hentet ut, satt i numpy array og gjort om til 2d Array

            power1d = df['Power']
            power1d = np.array(power1d);
            power2d = power1d.reshape([37,73]) #"Power" kolonen blir hentet ut, satt i numpy array og gjort om til 2d array

            THETA = np.deg2rad(theta2d)
            PHI = np.deg2rad(phi2d)
            R = power2d
            Rmax = np.max(R)
            Rmin = np.min(R)
            N = R / Rmax

            #Gjør om polar til kartesisk
            X = R * np.sin(THETA) * np.cos(PHI) 
            Y = R * np.sin(THETA) * np.sin(PHI)
            Z = R * np.cos(THETA)

            fig = plt.figure()

            #plot spesifikasjoner/settings
            ax = fig.add_subplot(1,1,1, projection='3d') 
            ax.grid(True)
            ax.axis('on')
            ax.set_xlabel('X')
            ax.set_ylabel('Y')
            ax.set_zlabel('Z')
            ax.set_xticklabels([]) 
            ax.set_yticklabels([])
            ax.set_zticklabels([])

            #colors =plt.cm.jet( (X.max()-X)/float((X-X.min()).max()))
            colors =plt.cm.jet( (R)/(Rmax) )
            ax.plot_surface(
                X, Y, Z, rstride=1, cstride=1, facecolors=colors,
                linewidth=0, antialiased=True, alpha=0.5, zorder = 0.5)

            ax.view_init(azim=300, elev = 30)

            # Add Spherical Grid
            phi ,theta = np.linspace(0, 2 * np.pi, 40), np.linspace(0, np.pi, 40)
            PHI, THETA  = np.meshgrid(phi,theta)
            R = Rmax
            X = R * np.sin(THETA) * np.cos(PHI)
            Y = R * np.sin(THETA) * np.sin(PHI)
            Z = R * np.cos(THETA)

            ax.plot_wireframe(X, Y, Z, linewidth=0.5, rstride=20, cstride=20)

            plt.show()

urrent plot

1 个答案:

答案 0 :(得分:0)

我有以下代码来考虑色标的半径。达到目的的是使用颜色图来获取归一化R的颜色值(此处为颜色权重)。

X = np.ones((phiSize, thetaSize))                                                                           # Prepare arrays to hold the cartesian coordinate data.
Y = np.ones((phiSize, thetaSize))
Z = np.ones((phiSize, thetaSize))
color_weight = np.ones((phiSize, thetaSize))

min_dBi = np.abs(df["dBi"].min())

for phi_idx, phi in enumerate(np.unique(df["Phi"])):
    for theta_idx, theta in enumerate(np.unique(df["Theta"])):
        e = df.query(f"Phi=={phi} and Theta=={theta}").iloc[0]["dBi"]
        e = min_dBi + e # so we dont have any negative numbers
        xe, ye, ze = sph2cart1(e, math.radians(theta), math.radians(phi))                                   # Calculate cartesian coordinates

        X[phi_idx, theta_idx] = xe                                                                                  # Store cartesian coordinates
        Y[phi_idx, theta_idx] = ye
        Z[phi_idx, theta_idx] = ze
        color_weight[phi_idx, theta_idx] = e

ax.plot_surface(X, Y, Z, color='b')                                                                         # Plot surface
plt.ylabel('Y')
plt.xlabel('X')                                                                                             # Plot formatting
plt.show()

使用phisizethetaSize来计算数据中唯一phi和theta的数量。 我天线的dBi存储在dBi列中的熊猫中。