当我手动将interpolate关键字设置为bilinear时,尝试使用上采样层创建网络时出现奇怪的错误。 如果我不考虑它,则使用默认的“最近邻居”;它工作正常。 有人知道怎么回事吗?
型号代码。在图层“ up1”上引发了错误
def build_model(self):
chnl4_input = Input(shape=(368, 256, 4))
chnl3_input = Input(shape=(736, 512, 3))
conv1 = Conv2D(26, self.kernel_size, activation='relu', padding='same')(chnl4_input)
conv2 = Conv2D(26, self.kernel_size, strides=(2, 2), activation='relu', padding='same')(conv1)
conv5 = Conv2D(64, self.kernel_size, activation='relu', padding='same')(conv2)
conv6 = Conv2D(64, self.kernel_size, activation='relu', padding='same')(conv5)
up1 = concatenate([UpSampling2D(size=(2, 2), interpolation='bilinear')(conv6), conv1], axis=-1)
conv7 = Conv2D(64, self.kernel_size, activation='relu', padding='same')(up1)
conv8 = Conv2D(64, self.kernel_size, activation='relu', padding='same')(conv7)
conv9 = Conv2D(64, self.kernel_size, activation='relu', padding='same')(conv8)
conv11 = Conv2D(64, self.kernel_size, activation='relu', padding='same')(conv9)
conv12 = Conv2D(64, self.kernel_size, activation='relu', padding='same')(conv11)
up3 = concatenate([UpSampling2D(size=(2, 2), interpolation='bilinear')(conv12), chnl3_input], axis=-1)
conv13 = Conv2D(67, self.kernel_size, activation='relu', padding='same')(up3)
conv14 = Conv2D(67, self.kernel_size, activation='relu', padding='same')(conv13)
conv15 = Conv2D(32, self.kernel_size, activation='relu', padding='same')(conv14)
conv16 = Conv2D(3, self.kernel_size, activation='relu', padding='same')(conv15)
out = conv16
self.model = Model(inputs=[chnl4_input, chnl3_input], outputs=[out])
self.model.compile(optimizer=self.optimizer_func, loss=self.loss_func)
self.model.name = 'UNET'
return self.modele here
错误:TypeError :(“关键字参数无法理解:”,“插值”)
~/MastersWork/Fergal/Scripts/models.py in build_model(self)
29 conv6 = Conv2D(64, self.kernel_size, activation='relu', padding='same')(conv5)
30
---> 31 up1 = concatenate([UpSampling2D(size=(2, 2), interpolation='bilinear')(conv6), conv1], axis=-1)
32 conv7 = Conv2D(64, self.kernel_size, activation='relu', padding='same')(up1)
33
~/anaconda3/envs/rhys_tensorflow/lib/python3.6/site-packages/keras/legacy/interfaces.py in wrapper(*args, **kwargs)
89 warnings.warn('Update your `' + object_name +
90 '` call to the Keras 2 API: ' + signature, stacklevel=2)
---> 91 return func(*args, **kwargs)
92 wrapper._original_function = func
93 return wrapper
~/anaconda3/envs/rhys_tensorflow/lib/python3.6/site-packages/keras/layers/convolutional.py in __init__(self, size, data_format, **kwargs)
1804 @interfaces.legacy_upsampling2d_support
1805 def __init__(self, size=(2, 2), data_format=None, **kwargs):
-> 1806 super(UpSampling2D, self).__init__(**kwargs)
1807 self.data_format = conv_utils.normalize_data_format(data_format)
1808 self.size = conv_utils.normalize_tuple(size, 2, 'size')
~/anaconda3/envs/rhys_tensorflow/lib/python3.6/site-packages/keras/engine/topology.py in __init__(self, **kwargs)
291 for kwarg in kwargs:
292 if kwarg not in allowed_kwargs:
--> 293 raise TypeError('Keyword argument not understood:', kwarg)
294 name = kwargs.get('name')
295 if not name:
有关upSampling2D的Keras页面供参考, https://www.tensorflow.org/api_docs/python/tf/keras/layers/UpSampling2D
答案 0 :(得分:0)
def bilinear_upsameple(tensor, size):
y = tf.image.resize_bilinear(images=tensor, size=size)
return y
dims = K.int_shape(input_tensor)
y_scaled = Lambda(lambda x : bilinear_upsameple(tensor=x, size=(dims[1]*scale, dims[2]*scale)))(input_tensor)
这是使用lambda层和tf.image.resize_bilinear进行双线性升采样的一种解决方法 在tf 1.12.0上可以正常工作