我已经设置了Apache Hbase,Nutch和Hadoop集群。我已经抓取了几份文档,即大约3000万本。集群中有3名工人和1名主人。我已经编写了自己的Hbase mapreduce作业,以读取已爬网的数据并根据某些逻辑对分数进行一些更改。
为此,我合并了相同域的文档,找到了它们的有效字节并找到了一些分数。后来,在reducer中,我将该分数分配给了该域的每个URL(通过缓存)。这部分工作要花费很多时间,即16个小时。以下是代码段
for ( int index = 0; index < Cache.size(); index++) {
String Orig_key = Cache.get(index);
float doc_score = log10;
WebPage page = datastore.get(Orig_key);
if ( page == null ) {
continue;
}
page.setScore(doc_score);
if (mark) {
page.getMarkers().put( Queue, Q1);
}
context.write(Orig_key, page);
}
如果我从数据存储中删除该文档读取语句,则作业仅在2到3个小时内完成。因此,我认为语句WebPage page = datastore.get(Orig_key);
导致了此问题。是不是
如果是这种情况,那么最好的方法是什么。 Cache对象只是一个包含相同域URL的列表。
DomainAnalysisJob.java ... ...
public class DomainAnalysisJob implements Tool {
public static final Logger LOG = LoggerFactory
.getLogger(DomainAnalysisJob.class);
private static final Collection<WebPage.Field> FIELDS = new HashSet<WebPage.Field>();
private Configuration conf;
protected static final Utf8 URL_ORIG_KEY = new Utf8("doc_orig_id");
protected static final Utf8 DOC_DUMMY_MARKER = new Utf8("doc_marker");
protected static final Utf8 DUMMY_KEY = new Utf8("doc_id");
protected static final Utf8 DOMAIN_DUMMY_MARKER = new Utf8("domain_marker");
protected static final Utf8 LINK_MARKER = new Utf8("link");
protected static final Utf8 Queue = new Utf8("q");
private static URLNormalizers urlNormalizers;
private static URLFilters filters;
private static int maxURL_Length;
static {
FIELDS.add(WebPage.Field.STATUS);
FIELDS.add(WebPage.Field.LANG_INFO);
FIELDS.add(WebPage.Field.URDU_SCORE);
FIELDS.add(WebPage.Field.MARKERS);
FIELDS.add(WebPage.Field.INLINKS);
}
/**
* Maps each WebPage to a host key.
*/
public static class Mapper extends GoraMapper<String, WebPage, Text, WebPage> {
@Override
protected void setup(Context context) throws IOException ,InterruptedException {
Configuration conf = context.getConfiguration();
urlNormalizers = new URLNormalizers(context.getConfiguration(), URLNormalizers.SCOPE_DEFAULT);
filters = new URLFilters(context.getConfiguration());
maxURL_Length = conf.getInt("url.characters.max.length", 2000);
}
@Override
protected void map(String key, WebPage page, Context context)
throws IOException, InterruptedException {
String reversedHost = null;
if (page == null) {
return;
}
if ( key.length() > maxURL_Length ) {
return;
}
String url = null;
try {
url = TableUtil.unreverseUrl(key);
url = urlNormalizers.normalize(url, URLNormalizers.SCOPE_DEFAULT);
url = filters.filter(url); // filter the url
} catch (Exception e) {
LOG.warn("Skipping " + key + ":" + e);
return;
}
if ( url == null) {
context.getCounter("DomainAnalysis", "FilteredURL").increment(1);
return;
}
try {
reversedHost = TableUtil.getReversedHost(key.toString());
}
catch (Exception e) {
return;
}
page.getMarkers().put( URL_ORIG_KEY, new Utf8(key) );
context.write( new Text(reversedHost), page );
}
}
public DomainAnalysisJob() {
}
public DomainAnalysisJob(Configuration conf) {
setConf(conf);
}
@Override
public Configuration getConf() {
return conf;
}
@Override
public void setConf(Configuration conf) {
this.conf = conf;
}
public void updateDomains(boolean buildLinkDb, int numTasks) throws Exception {
NutchJob job = NutchJob.getInstance(getConf(), "rankDomain-update");
job.getConfiguration().setInt("mapreduce.task.timeout", 1800000);
if ( numTasks < 1) {
job.setNumReduceTasks(job.getConfiguration().getInt(
"mapred.map.tasks", job.getNumReduceTasks()));
} else {
job.setNumReduceTasks(numTasks);
}
ScoringFilters scoringFilters = new ScoringFilters(getConf());
HashSet<WebPage.Field> fields = new HashSet<WebPage.Field>(FIELDS);
fields.addAll(scoringFilters.getFields());
StorageUtils.initMapperJob(job, fields, Text.class, WebPage.class,
Mapper.class);
StorageUtils.initReducerJob(job, DomainAnalysisReducer.class);
job.waitForCompletion(true);
}
@Override
public int run(String[] args) throws Exception {
boolean linkDb = false;
int numTasks = -1;
for (int i = 0; i < args.length; i++) {
if ("-rankDomain".equals(args[i])) {
linkDb = true;
} else if ("-crawlId".equals(args[i])) {
getConf().set(Nutch.CRAWL_ID_KEY, args[++i]);
} else if ("-numTasks".equals(args[i]) ) {
numTasks = Integer.parseInt(args[++i]);
}
else {
throw new IllegalArgumentException("unrecognized arg " + args[i]
+ " usage: updatedomain -crawlId <crawlId> [-numTasks N]" );
}
}
LOG.info("Updating DomainRank:");
updateDomains(linkDb, numTasks);
return 0;
}
public static void main(String[] args) throws Exception {
final int res = ToolRunner.run(NutchConfiguration.create(),
new DomainAnalysisJob(), args);
System.exit(res);
}
}
DomainAnalysisReducer.java
...
...
public class DomainAnalysisReducer extends
GoraReducer<Text, WebPage, String, WebPage> {
public static final Logger LOG = DomainAnalysisJob.LOG;
public DataStore<String, WebPage> datastore;
protected static float q1_ur_threshold = 500.0f;
protected static float q1_ur_docCount = 50;
public static final Utf8 Queue = new Utf8("q"); // Markers for Q1 and Q2
public static final Utf8 Q1 = new Utf8("q1");
public static final Utf8 Q2 = new Utf8("q2");
@Override
protected void setup(Context context) throws IOException,
InterruptedException {
Configuration conf = context.getConfiguration();
try {
datastore = StorageUtils.createWebStore(conf, String.class, WebPage.class);
}
catch (ClassNotFoundException e) {
throw new IOException(e);
}
q1_ur_threshold = conf.getFloat("domain.queue.threshold.bytes", 500.0f);
q1_ur_docCount = conf.getInt("domain.queue.doc.count", 50);
LOG.info("Conf updated: Queue-bytes-threshold = " + q1_ur_threshold + " Queue-doc-threshold: " + q1_ur_docCount);
}
@Override
protected void cleanup(Context context) throws IOException, InterruptedException {
datastore.close();
}
@Override
protected void reduce(Text key, Iterable<WebPage> values, Context context)
throws IOException, InterruptedException {
ArrayList<String> Cache = new ArrayList<String>();
int doc_counter = 0;
int total_ur_bytes = 0;
for ( WebPage page : values ) {
// cache
String orig_key = page.getMarkers().get( DomainAnalysisJob.URL_ORIG_KEY ).toString();
Cache.add(orig_key);
// do not consider those doc's that are not fetched or link URLs
if ( page.getStatus() == CrawlStatus.STATUS_UNFETCHED ) {
continue;
}
doc_counter++;
int ur_score_int = 0;
int doc_ur_bytes = 0;
int doc_total_bytes = 0;
String ur_score_str = "0";
String langInfo_str = null;
// read page and find its Urdu score
langInfo_str = TableUtil.toString(page.getLangInfo());
if (langInfo_str == null) {
continue;
}
ur_score_str = TableUtil.toString(page.getUrduScore());
ur_score_int = Integer.parseInt(ur_score_str);
doc_total_bytes = Integer.parseInt( langInfo_str.split("&")[0] );
doc_ur_bytes = ( doc_total_bytes * ur_score_int) / 100; //Formula to find ur percentage
total_ur_bytes += doc_ur_bytes;
}
float avg_bytes = 0;
float log10 = 0;
if ( doc_counter > 0 && total_ur_bytes > 0) {
avg_bytes = (float) total_ur_bytes/doc_counter;
log10 = (float) Math.log10(avg_bytes);
log10 = (Math.round(log10 * 100000f)/100000f);
}
context.getCounter("DomainAnalysis", "DomainCount").increment(1);
// if average bytes and doc count, are more than threshold then mark as q1
boolean mark = false;
if ( avg_bytes >= q1_ur_threshold && doc_counter >= q1_ur_docCount ) {
mark = true;
for ( int index = 0; index < Cache.size(); index++) {
String Orig_key = Cache.get(index);
float doc_score = log10;
WebPage page = datastore.get(Orig_key);
if ( page == null ) {
continue;
}
page.setScore(doc_score);
if (mark) {
page.getMarkers().put( Queue, Q1);
}
context.write(Orig_key, page);
}
}
}
在测试和调试中,我发现语句WebPage page = datastore.get(Orig_key);
是造成时间过多的主要原因。完成这项工作大约需要16个小时,但是当我用WebPage page = WebPage.newBuilder().build();
替换此语句时,时间减少到了6个小时。这是由于IO吗?