我有以下pyspark代码,用于从logs /目录读取日志文件,然后仅在其中包含数据时将结果保存到文本文件中,换句话说,当RDD不为空时。但是我在执行它时遇到了问题。我已经尝试了take(1)和notempty。由于这是dstream rdd,因此我们无法对其应用rdd方法。如果我有任何遗漏,请告诉我。
conf = SparkConf().setMaster("local").setAppName("PysparkStreaming")
sc = SparkContext.getOrCreate(conf = conf)
ssc = StreamingContext(sc, 3) #Streaming will execute in each 3 seconds
lines = ssc.textFileStream('/Users/rocket/Downloads/logs/') #'logs/ mean directory name
audit = lines.map(lambda x: x.split('|')[3])
result = audit.countByValue()
#result.pprint()
#result.foreachRDD(lambda rdd: rdd.foreach(sendRecord))
# Print the first ten elements of each RDD generated in this DStream to the console
if result.foreachRDD(lambda rdd: rdd.take(1)):
result.pprint()
result.saveAsTextFiles("/Users/rocket/Downloads/output","txt")
else:
result.pprint()
print("empty")
答案 0 :(得分:0)
正确的结构应该是
val textFragment = MyFragment()
val mytostring = board_status_tv.getText().toString()
val mArgs = Bundle()
mArgs.putString(BOARDSTATE, mytostring)
textFragment.setArguments(mArgs)
但是,如上所述,因为RDD API没有import uuid
def process_batch(rdd):
if not rdd.isEmpty():
result.saveAsTextFiles("/Users/rocket/Downloads/output-{}".format(
str(uuid.uuid4())
) ,"txt")
result.foreachRDD(process_batch)
模式,所以每个批次都需要一个单独的目录。
另一种可能是:
append