微调模型删除以前添加的图层

时间:2019-02-26 22:25:47

标签: machine-learning keras deep-learning

我使用Keras 2.2.4。我训练了一个模型,该模型要每30个时代用新的数据内容(图像分类)进行微调。

每天,我都会在类中添加更多图像以供模型使用。每隔30个周期对模型进行一次重新训练。 我使用2个条件,第一个条件是如果以前的模型尚未受过训练,第二个条件是模型已经受过训练,然后我想用新的内容/类对其进行微调。

model_base = keras.applications.vgg19.VGG19(include_top=False, input_shape=(*IMG_SIZE, 3), weights='imagenet')
output = GlobalAveragePooling2D()(model_base.output)

# If we resume a pretrained model load it
if os.path.isfile(os.path.join(MODEL_PATH, 'weights.h5')): 
    print('Using existing weights...')
    base_lr = 0.0001

    model = load_model(os.path.join(MODEL_PATH, 'weights.h5'))
    output = Dense(len(all_character_names), activation='softmax', name='d2')(output)
    model = Model(model_base.input, output)

    for layer in model_base.layers[:-2]:
        layer.trainable = False 
else:
    base_lr = 0.001

    output = BatchNormalization()(output)
    output = Dropout(0.5)(output)
    output = Dense(2048, activation='relu', name='d1')(output)
    output = BatchNormalization()(output)
    output = Dropout(0.5)(output)
    output = Dense(len(all_character_names), activation='softmax', name='d2')(output)
    model = Model(model_base.input, output)

    for layer in model_base.layers[:-5]:
        layer.trainable = False 


opt = optimizers.Adam(lr=base_lr, decay=base_lr / epochs)
model.compile(optimizer=opt,
            loss='categorical_crossentropy',
            metrics=['accuracy'])

第一次模型汇总:

...
_________________________________________________________________
block5_conv4 (Conv2D)        (None, 14, 14, 512)       2359808   
_________________________________________________________________
block5_pool (MaxPooling2D)   (None, 7, 7, 512)         0         
_________________________________________________________________
global_average_pooling2d_1 ( (None, 512)               0         
_________________________________________________________________
batch_normalization_1 (Batch (None, 512)               2048      
_________________________________________________________________
dropout_1 (Dropout)          (None, 512)               0         
_________________________________________________________________
d1 (Dense)                   (None, 2048)              1050624   
_________________________________________________________________
batch_normalization_2 (Batch (None, 2048)              8192      
_________________________________________________________________
dropout_2 (Dropout)          (None, 2048)              0         
_________________________________________________________________
d2 (Dense)                   (None, 19)                38931     
=================================================================
Total params: 21,124,179
Trainable params: 10,533,907
Non-trainable params: 10,590,272

第二次模​​型摘要:

...
_________________________________________________________________
block5_conv4 (Conv2D)        (None, 14, 14, 512)       2359808   
_________________________________________________________________
block5_pool (MaxPooling2D)   (None, 7, 7, 512)         0         
_________________________________________________________________
global_average_pooling2d_1 ( (None, 512)               0         
_________________________________________________________________
d2 (Dense)                   (None, 19)                9747      
=================================================================
Total params: 20,034,131
Trainable params: 2,369,555
Non-trainable params: 17,664,576

问题:当模型存在并加载以进行微调时,它似乎失去了所有首次添加的附加图层(密集2048,辍学等)

我是否需要再次添加这些图层?似乎没有任何意义,因为它会失去第一遍的训练信息。

注意:我可能不需要设置base_lr,因为保存模型也应该将学习率保存在之前停止的状态,但是稍后我会进行检查。

1 个答案:

答案 0 :(得分:0)

请注意,一旦加载模型:

model = load_model(os.path.join(MODEL_PATH, 'weights.h5'))

您不使用它。您只是再次将其覆盖

model = Model(model_base.input, output)

其中输出也定义为对base_model的操作。 在我看来,您只想删除load_model之后的行。