我正在尝试使用sklearn中的Isolation Forest检测乳腺癌数据集中的异常。我正在尝试将Iolation Forest应用于混合数据集,当我拟合模型时会给我带来价值错误。
这是我的数据集: https://archive.ics.uci.edu/ml/machine-learning-databases/breast-cancer/
这是我的代码:
from sklearn.model_selection import train_test_split
rng = np.random.RandomState(42)
X = data_cancer.drop(['Class'],axis=1)
y = data_cancer['Class']
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.2, random_state = 20)
X_outliers = rng.uniform(low=-4, high=4, size=(X.shape[0], X.shape[1]))
clf = IsolationForest()
clf.fit(X_train)
这是我得到的错误:
ValueError:无法将字符串转换为float:'30 -39'
是否可以对分类数据使用隔离林?如果是,该怎么办?
答案 0 :(得分:2)
您应该将分类数据编码为数字表示形式。
有许多方法可以编码分类数据,但我建议您从
开始 sklearn.preprocessing.LabelEncoder
(如果基数高)和sklearn.preprocessing.OneHotEncoder
(如果基数低)。
这里是一个用法示例:
from numpy import argmax
from sklearn.preprocessing import LabelEncoder
from sklearn.preprocessing import OneHotEncoder
# define example
data = ['cold', 'cold', 'warm', 'cold', 'hot', 'hot', 'warm', 'cold', 'warm', 'hot']
values = array(data)
print(values)
# integer encode
label_encoder = LabelEncoder()
integer_encoded = label_encoder.fit_transform(values)
print(integer_encoded)
# binary encode
onehot_encoder = OneHotEncoder(sparse=False)
integer_encoded = integer_encoded.reshape(len(integer_encoded), 1)
onehot_encoded = onehot_encoder.fit_transform(integer_encoded)
print(onehot_encoded)
# invert first example
inverted = label_encoder.inverse_transform([argmax(onehot_encoded[0, :])])
print(inverted
)
输出:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
['cold' 'cold' 'warm' 'cold' 'hot' 'hot' 'warm' 'cold' 'warm' 'hot']
[0 0 2 0 1 1 2 0 2 1]
[[ 1. 0. 0.]
[ 1. 0. 0.]
[ 0. 0. 1.]
[ 1. 0. 0.]
[ 0. 1. 0.]
[ 0. 1. 0.]
[ 0. 0. 1.]
[ 1. 0. 0.]
[ 0. 0. 1.]
[ 0. 1. 0.]]
['cold']