在Tensorflow中使用ONNX加载​​Squeezenet-无法设置占位符

时间:2019-02-25 22:26:26

标签: python tensorflow onnx

当尝试将Squeezenet1.1加载到TensorFlow中时,出现以下错误消息:

import tensorflow as tf import os import numpy as np from tensorflow.core.framework import graph_pb2 graph_def = graph_pb2.GraphDef() with open(os.path.join(script_dir, 'squeezenet.pb'), "rb") as f: graph_def.ParseFromString(f.read()) test_graph = tf.Graph() with test_graph.as_default() as graph: tf.import_graph_def(graph_def) with tf.Session(graph=graph) as sess: data = graph.get_tensor_by_name("import/data:0") data_op = graph.get_operation_by_name("import/data") random_input = np.random.rand(1, 3, 224, 224).astype(np.float) sess.run(data_op, feed_dict={data: random_input})

我的目标是加载以ONNX文件(https://github.com/onnx/models/tree/master/models/image_classification/squeezenet)形式给出的Squeezenet,然后首先将其另存为.pb文件。给定的.pb文件,我使用以下代码执行一个推断:

tf.contrib.framework.get_placeholders(graph)

有趣的是,尽管January 15, 2018 - January 18, 2018 - Nothing needs to happen January 28, 2018 - February 2, 2018 would need to be split into two 明确指出,只有一个占位符,“导入/数据”操作仍需要feed_dict,而Tensorboard也显示此操作需要该占位符。

感谢您的帮助!

0 个答案:

没有答案