我正在尝试在https://understat.com/match/9457的“ Timing Sheet”标签下抓取图表数据。
我的方法是使用BeautifulSoap和Selenium,但我似乎无法使其正常工作。
这是我的python脚本:
from bs4 import BeautifulSoup
import requests
# Set the url we want
xg_url = 'https://understat.com/match/9457'
# Use requests to download the webpage
xg_data = requests.get(xg_url)
# Get the html code for the webpage
xg_html = xg_data.content
# Parse the html using bs4
soup = BeautifulSoup(xg_html, 'lxml')
#print(soup.prettify())
print(soup.title)
from selenium import webdriver
from selenium.webdriver.chrome.options import Options
options = Options()
options.add_argument("--no-sandbox")
options.add_argument("--headless")
driver = webdriver.Chrome("/usr/local/bin/chromedriver", chrome_options=options)
# Set up the Selenium driver (in this case I am using the Chrome browser)
options = webdriver.ChromeOptions()
# Tell the driver to navigate to the page url
driver.get(xg_url)
# Grab the html code from the webpage
soup = BeautifulSoup(driver.page_source, 'lxml')
# Get the table headers using 3 chained find operations
# 1. Find the div containing the table (div class = chemp jTable)
# 2. Find the table within that div
# 3. Find all 'th' elements where class = sort
headers = soup.find('div', attrs={'class':'scheme-block'}).find('div').find_all('div',attrs={'class':'chartjs-tooltip team-home is-hide'})
headers
# Iterate over headers, get the text from each item, and add the results to headers_list
headers_list = []
for header in headers:
headers_list.append(header.get_text(strip=True))
print(headers_list)
# You can also simply call elements like tables directly instead of using find('table') if you are only looking for the first instance of that element
body = soup.find('div', attrs={'class':'scheme-block'}).div
# Create a master list for row data
all_rows_list = []
# For each row in the table body
for tr in body.find_all('tr'):
# Get data from each cell in the row
row = tr.find_all('td')
# Create list to save current row data to
current_row = []
# For each item in the row variable
for item in row:
# Add the text data to the current_row list
current_row.append(item.get_text(strip=True))
# Add the current row data to the master list
all_rows_list.append(current_row)
# Create a dataframe where the rows = all_rows_list and columns = headers_list
xg_df = pd.DataFrame(all_rows_list, columns=headers_list)
xg_df
这段代码是从另一个任务中提取的,我已经做了一些更改,以抓取div而不是表格,但查看数据,似乎还没有抓取图表。
任何想法可能有什么问题吗?
答案 0 :(得分:2)
您正在使它变得比所需的复杂一些。如果查看batch_size = 10
chunks = len(diff_files) // batch_size + 1
ave_time = []
for i in range(chunks):
batch = diff_files[i*batch_size:(i+1)*batch_size]
images = []
files = []
proc_time = []
for file in batch:
image_path = os.path.join(subdir_path, file)
print('Reading file {}'.format(image_path))
image = cv2.imread(image_path)
image_np = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
images.append(image_np)
files.append(file)
output_dicts, out_time = run_inference_for_multiple_images(images, detection_graph)
print('length of output_dicts is : {}'.format(len(output_dicts)))
if len(output_dicts) == 0:
break
for idx in range(len(output_dicts)):
output_dict = output_dicts[idx]
image_np = images[idx]
file = files[idx]
# Visualization of the results of a detection.
start = time.time()
vis_util.visualize_boxes_and_labels_on_image_array(
image_np,
output_dict['detection_boxes'],
output_dict['detection_classes'],
output_dict['detection_scores'],
category_index,
instance_masks=output_dict.get('detection_masks'),
use_normalized_coordinates=True, min_score_thresh=.5,
line_thickness=4, skip_scores=False,
skip_labels=False,
skip_boxes=False)
height, width, chan = image_np.shape
# Saving the processed image
image_np = cv2.cvtColor(image_np, cv2.COLOR_RGB2BGR)
cv2.imwrite(os.path.join(result_img_path, file), image_np)
print('Saving {}, time : {}'.format(file, time.time()-start))
proc_time.append(time.time()-start + out_time[idx])
# count += 1
if len(proc_time) != 0:
mean_batch_time = statistics.mean(proc_time)
print('mean processing time: {}'.format(mean_batch_time))
ave_time.append(mean_batch_time)
proc_time.clear()
output_dicts.clear()
标签,则所有数据都在其中。大多数情况下,它已经采用了不错的json格式,只需要对字符串进行一些拆分即可获得结构。在这种情况下,您会发现它看起来有些不同:
<script>
但是不用担心,使用某些正则表达式仍然可以使用它。我还将镜头数据和名册数据从json转换为数据帧,但是match数据是具有所有值的单个键,因此不会受到影响,因为它只是1行。您甚至可能不需要数据框,而只需使用json格式,但这一切就为您提供了:
<script>
var shotsData = JSON.parse('\x7B\x22h\x22\x3A\x5B\x7B\x22id\x22\x3A\x22271478\x22,\x22minute\x22\x3A\x226\x22,\x22result\x22\x3A\x22MissedShots\x22,\x22....
输出:
import requests
import json
import re
from pandas.io.json import json_normalize
import pandas as pd
response = requests.get('https://understat.com/match/9457')
shotsData = re.search("shotsData\s+=\s+JSON.parse\('([^']+)", response.text)
decoded_string = bytes(shotsData.groups()[0], 'utf-8').decode('unicode_escape')
shotsObj = json.loads(decoded_string)
match_info = re.search("match_info\s+=\s+JSON.parse\('([^']+)", response.text)
decoded_string = bytes(match_info.groups()[0], 'utf-8').decode('unicode_escape')
matchObj = json.loads(decoded_string)
rostersData = re.search("rostersData\s+=\s+JSON.parse\('([^']+)", response.text)
decoded_string = bytes(rostersData.groups()[0], 'utf-8').decode('unicode_escape')
rostersObj = json.loads(decoded_string)
# Shots Data into a DataFrame
away_shots_df = json_normalize(shotsObj['a'])
home_shots_df = json_normalize(shotsObj['h'])
shots_df = away_shots_df.append(home_shots_df)
# Rosters Data into a DataFrame
away_rosters_df = pd.DataFrame()
for key, v in rostersObj['a'].items():
temp_df = pd.DataFrame.from_dict([v])
away_rosters_df = away_rosters_df.append(temp_df)
home_rosters_df = pd.DataFrame()
for key, v in rostersObj['h'].items():
temp_df = pd.DataFrame.from_dict([v])
home_rosters_df = home_rosters_df.append(temp_df)
rosters_df = away_rosters_df.append(home_rosters_df)
teams_dict = {'a':matchObj['team_a'], 'h':matchObj['team_h']}
match_title = matchObj['team_h'] + ' vs. ' + matchObj['team_a']
附加
如所怀疑,时序图是由print (shots_df)
X ... xG
0 0.9069999694824219 ... 0.40696778893470764
1 0.8190000152587891 ... 0.05737118795514107
2 0.94 ... 0.5754774808883667
3 0.9319999694824219 ... 0.02447112277150154
4 0.725 ... 0.02365683950483799
5 0.7759999847412109 ... 0.026968277990818024
6 0.8619999694824219 ... 0.08384699374437332
7 0.7659999847412109 ... 0.013624735176563263
0 0.9269999694824219 ... 0.055443812161684036
1 0.835 ... 0.03609708696603775
2 0.9059999847412109 ... 0.03347432240843773
3 0.9769999694824218 ... 0.07148116827011108
4 0.9869999694824219 ... 0.9712227582931519
5 0.8390000152587891 ... 0.028583310544490814
6 0.8580000305175781 ... 0.07498162239789963
7 0.924000015258789 ... 0.04431726038455963
8 0.9569999694824218 ... 0.48726019263267517
9 0.9540000152587891 ... 0.06847231835126877
10 0.91 ... 0.07779974490404129
11 0.875999984741211 ... 0.04344969615340233
12 0.8780000305175781 ... 0.019344232976436615
13 0.789000015258789 ... 0.043812621384859085
14 0.9419999694824219 ... 0.34188181161880493
15 0.9 ... 0.05839642137289047
16 0.9069999694824219 ... 0.043319668620824814
17 0.8490000152587891 ... 0.058181893080472946
18 0.9019999694824219 ... 0.09132817387580872
19 0.87 ... 0.11395697295665741
20 0.8819999694824219 ... 0.035116128623485565
[29 rows x 20 columns]
中的'xG
'列生成的。这只是每个团队的xP的总和。我还将在最后提供折线图,您可以将鼠标悬停在图表上。签出plotly。我以前使用过它,但是它很好,超出了问题的范围。但是这是我做的一个简短的例子:
shotsData
输出:
#########################################################################
# Timing Chart is an aggregation (running sum) of xG from the shotsData
#########################################################################
import numpy as np
# Convert 'minute' astype int and sort the dataframe by 'minute'
shots_df['minute'] = shots_df['minute'].astype(int)
shots_df['xG'] = shots_df['xG'].astype(float)
timing_chart_df = shots_df[['h_a', 'minute', 'xG']].sort_values('minute')
timing_chart_df['h_a'] = timing_chart_df['h_a'].map(teams_dict)
# Get max value of the 'minute' column to interpolate minute interval between that range
max_value = timing_chart_df['minute'].max()
# Aggregate xG within the same minute
timing_chart_df = timing_chart_df.groupby(['h_a','minute'], as_index=False)['xG'].sum()
# Interpolate for each team/group
min_idx = np.arange(timing_chart_df['minute'].max() + 1)
m_idx = pd.MultiIndex.from_product([timing_chart_df['h_a'].unique(), min_idx], names=['h_a', 'minute'])
# Calculate the running sum
timing_chart_df = timing_chart_df.set_index(['h_a', 'minute']).reindex(m_idx, fill_value=0).reset_index()
timing_chart_df['running_sum_xG'] = timing_chart_df.groupby('h_a')['xG'].cumsum()
timing_chart_T_df = timing_chart_df.pivot(index='h_a', columns='minute', values='running_sum_xG')
timing_chart_T_df = timing_chart_T_df.reset_index().rename(columns={timing_chart_T_df.index.name:match_title})
绘制折线图:
print (timing_chart_T_df.to_string())
minute West Ham vs. Fulham 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92
0 Fulham 0.406968 0.464339 1.039816 1.039816 1.039816 1.039816 1.039816 1.064288 1.064288 1.064288 1.064288 1.064288 1.064288 1.064288 1.064288 1.064288 1.064288 1.064288 1.064288 1.064288 1.087944 1.087944 1.087944 1.087944 1.087944 1.087944 1.087944 1.087944 1.087944 1.087944 1.087944 1.087944 1.087944 1.087944 1.087944 1.087944 1.087944 1.087944 1.087944 1.087944 1.087944 1.087944 1.087944 1.087944 1.087944 1.087944 1.087944 1.087944 1.087944 1.087944 1.087944 1.087944 1.087944 1.087944 1.087944 1.114913 1.114913 1.114913 1.114913 1.114913 1.114913 1.114913 1.114913 1.114913 1.114913 1.114913 1.114913 1.114913 1.114913 1.114913 1.114913 1.114913 1.114913 1.114913 1.114913 1.114913 1.114913 1.114913 1.114913 1.114913 1.114913 1.114913 1.114913 1.198760 1.198760 1.198760 1.19876 1.19876 1.198760 1.198760 1.198760 1.198760 1.212384
1 West Ham 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.055444 0.055444 0.055444 0.055444 0.055444 0.055444 0.055444 0.055444 0.055444 0.055444 0.055444 0.055444 0.055444 0.055444 0.055444 0.055444 0.091541 0.091541 0.091541 0.091541 0.091541 0.091541 1.167719 1.167719 1.196302 1.196302 1.196302 1.196302 1.271284 1.271284 1.315601 1.315601 1.315601 1.802862 1.802862 1.871334 1.949134 1.949134 1.992583 2.011928 2.011928 2.011928 2.011928 2.011928 2.011928 2.011928 2.011928 2.011928 2.011928 2.011928 2.011928 2.011928 2.011928 2.011928 2.011928 2.011928 2.011928 2.011928 2.011928 2.011928 2.011928 2.011928 2.011928 2.011928 2.011928 2.011928 2.011928 2.011928 2.055740 2.055740 2.055740 2.397622 2.397622 2.397622 2.397622 2.397622 2.397622 2.397622 2.456018 2.499338 2.55752 2.55752 2.648848 2.762805 2.797921 2.797921 2.797921