Tensorflow:裁剪图像的最大中央正方形区域

时间:2019-02-25 11:58:35

标签: python tensorflow image-processing

我的网络拍摄了artifactory个像素大小的图像。因此,我必须调整数据集大小不同的图像的大小。我希望能够从给定图像中提取最大的中央正方形区域,然后将其大小调整为100 x 100

更准确地说,假设图像的宽度为100 x 100像素,高度为200像素。然后,我想提取最大的中央正方形区域,在此示例中为50,然后将图像调整为50 x 50像素。

使用Tensorflow的正确方法是什么?现在,我正在使用100 x 100,它会使图像失真,并且我想消除它。

4 个答案:

答案 0 :(得分:2)

crop_to_bounding_box之类的声音正在满足您的需求:

import tensorflow as tf

def crop_center(image):
    h, w = image.shape[-3], image.shape[-2]
    if h > w:
        cropped_image = tf.image.crop_to_bounding_box(image, (h - w) // 2, 0, w, w)
    else:
        cropped_image = tf.image.crop_to_bounding_box(image, 0, (w - h) // 2, h, h)
    return tf.image.resize_images(cropped_image, (100, 100))

答案 1 :(得分:1)

我认为这可以满足您的要求

import tensorflow as tf

def crop_center_and_resize(img, size):
    s = tf.shape(img)
    w, h = s[0], s[1]
    c = tf.minimum(w, h)
    w_start = (w - c) // 2
    h_start = (h - c) // 2
    center = img[w_start:w_start + c, h_start:h_start + c]
    return tf.image.resize_images(img, [size, size])

print(crop_center_and_resize(tf.zeros((80, 50, 3)), 100))
# Tensor("resize_images/Squeeze:0", shape=(100, 100, 3), dtype=float32)

还有tf.image.crop_and_resize,它可以一次性完成两项操作,但是您必须使用归一化的图像坐标:

import tensorflow as tf

def crop_center_and_resize(img, size):
    s = tf.shape(img)
    w, h = s[0], s[1]
    c = tf.minimum(w, h)
    wn, hn = h / c, w / c
    result = tf.image.crop_and_resize(tf.expand_dims(img, 0),
                                      [[(1 - wn) / 2, (1 - hn) / 2, wn, hn]],
                                      [0], [size, size])
    return tf.squeeze(result, 0)

答案 2 :(得分:1)

import tensorflow as tf


def central_square_crop(image):                                                                                                                                                                                                                                       
    h, w = image.get_shape()[0].value, image.get_shape()[1].value                                                                                                                                                                                                     
    side = tf.minimum(h, w)                                                                                                                                                                                                                                           
    begin_h = tf.maximum(0, h - side) // 2                                                                                                                                                                                                                            
    begin_w = tf.maximum(0, w - side) // 2                                                                                                                                                                                                                            
    return tf.slice(image, [begin_h, begin_w, 0], [side, side, -1])                                                                                                                                                                                                   


def main():                                                                                                                                                                                                                                                           
    image_t = tf.reshape(tf.range(5 * 7), [5, 7])                                                                                                                                                                                                                     
    image_t = tf.transpose(tf.stack([image_t, image_t, image_t]), [1, 2, 0])                                                                                                                                                                                          
    cropped_image_t = central_square_crop(image_t)                                                                                                                                                                                                                    
    with tf.Session() as sess:                                                                                                                                                                                                                                        
        image, cropped_image = sess.run([image_t, cropped_image_t])                                                                                                                                                                                                   
        print(image[:, :, 0])                                                                                                                                                                                                                                         
        print(cropped_image[:, :, 0])                                                                                                                                                                                                                                 


if __name__ == '__main__':                                                                                                                                                                                                                                            
    main() 

裁剪前的输出:

[[ 0  1  2  3  4  5  6]
 [ 7  8  9 10 11 12 13]
 [14 15 16 17 18 19 20]
 [21 22 23 24 25 26 27]
 [28 29 30 31 32 33 34]]

裁剪后:

[[ 1  2  3  4  5]
 [ 8  9 10 11 12]
 [15 16 17 18 19]
 [22 23 24 25 26]
 [29 30 31 32 33]]

然后,照常应用调整大小。

答案 3 :(得分:1)

怎么样?

import tensorflow as tf
import pathlib

data_root_orig = tf.keras.utils.get_file(
    origin="https://storage.googleapis.com/download.tensorflow.org/example_images/flower_photos.tgz",
    fname="flower_photos",
    untar=True,
)
data_root = pathlib.Path(data_root_orig)
print(data_root)
for item in data_root.iterdir():
    print(item)

import random

all_image_paths = list(data_root.glob("*/*"))
all_image_paths = [str(path) for path in all_image_paths]
image_count = len(all_image_paths)
print(image_count)

def preprocess_image(img: tf.Tensor):
    img = tf.image.decode_jpeg(img, channels=3)
    shapes = tf.shape(img)
    h, w = shapes[-3], shapes[-2]
    small = tf.minimum(h, w)
    img = tf.image.resize_with_crop_or_pad(img, small, small)
    img = tf.image.resize(img, [192, 192])
    img /= 255.0
    return img

@tf.function
def load_and_preprocess_image(path: str):
    image = tf.io.read_file(path)
    return preprocess_image(image)

import matplotlib.pyplot as plt

image_path = all_image_paths[0]
plt.imshow(load_and_preprocess_image(image_path))
plt.grid(False)
plt.show()

原始的 original 调整大小 [output image2