我试图将Darknet转换为caffe(受此源代码https://github.com/ChenYingpeng/caffe-yolov3的启发,该源代码涉及pytorch,darknet和caffe之间的转换)。但是,我得到了这个错误:
[libprotobuf ERROR google/protobuf/text_format.cc:274] Error parsing text-format caffe.NetParameter: 2622:20: Message type "caffe.LayerParameter" has no field named "upsample_param". WARNING: Logging before InitGoogleLogging() is written to STDERR F0224 23:43:05.536036 7907 upgrade_proto.cpp:90] Check failed: ReadProtoFromTextFile(param_file, param) Failed to parse NetParameter file: yolov3.prototxt *** Check failure stack trace: *** Aborted (core dumped)
这是代码:
# The caffe module needs to be on the Python path;
# we'll add it here explicitly.
caffe_root='/home/chen/caffe/'
#os.chdir(caffe_root)
import sys
sys.path.insert(0,caffe_root+'python')
import caffe
import numpy as np
from collections import OrderedDict
from cfg import *
from prototxt import *
def darknet2caffe(cfgfile, weightfile, protofile, caffemodel):
net_info = cfg2prototxt(cfgfile)
save_prototxt(net_info , protofile, region=False)
net = caffe.Net(protofile, caffe.TEST)
params = net.params
blocks = parse_cfg(cfgfile)
#Open the weights file
fp = open(weightfile, "rb")
#The first 4 values are header information
# 1. Major version number
# 2. Minor Version Number
# 3. Subversion number
# 4. IMages seen
header = np.fromfile(fp, dtype = np.int32, count = 5)
#fp = open(weightfile, 'rb')
#header = np.fromfile(fp, count=5, dtype=np.int32)
#header = np.ndarray(shape=(5,),dtype='int32',buffer=fp.read(20))
#print(header)
buf = np.fromfile(fp, dtype = np.float32)
#print(buf)
fp.close()
layers = []
layer_id = 1
start = 0
for block in blocks:
if start >= buf.size:
break
if block['type'] == 'net':
continue
elif block['type'] == 'convolutional':
batch_normalize = int(block['batch_normalize'])
if block.has_key('name'):
conv_layer_name = block['name']
bn_layer_name = '%s-bn' % block['name']
scale_layer_name = '%s-scale' % block['name']
else:
conv_layer_name = 'layer%d-conv' % layer_id
bn_layer_name = 'layer%d-bn' % layer_id
scale_layer_name = 'layer%d-scale' % layer_id
if batch_normalize:
start = load_conv_bn2caffe(buf, start, params[conv_layer_name], params[bn_layer_name], params[scale_layer_name])
else:
start = load_conv2caffe(buf, start, params[conv_layer_name])
layer_id = layer_id+1
elif block['type'] == 'depthwise_convolutional':
batch_normalize = int(block['batch_normalize'])
if block.has_key('name'):
conv_layer_name = block['name']
bn_layer_name = '%s-bn' % block['name']
scale_layer_name = '%s-scale' % block['name']
else:
conv_layer_name = 'layer%d-dwconv' % layer_id
bn_layer_name = 'layer%d-bn' % layer_id
scale_layer_name = 'layer%d-scale' % layer_id
if batch_normalize:
start = load_conv_bn2caffe(buf, start, params[conv_layer_name], params[bn_layer_name], params[scale_layer_name])
else:
start = load_conv2caffe(buf, start, params[conv_layer_name])
layer_id = layer_id+1
elif block['type'] == 'connected':
if block.has_key('name'):
fc_layer_name = block['name']
else:
fc_layer_name = 'layer%d-fc' % layer_id
start = load_fc2caffe(buf, start, params[fc_layer_name])
layer_id = layer_id+1
elif block['type'] == 'maxpool':
layer_id = layer_id+1
elif block['type'] == 'avgpool':
layer_id = layer_id+1
elif block['type'] == 'region':
layer_id = layer_id + 1
elif block['type'] == 'route':
layer_id = layer_id + 1
elif block['type'] == 'shortcut':
layer_id = layer_id + 1
elif block['type'] == 'softmax':
layer_id = layer_id + 1
elif block['type'] == 'cost':
layer_id = layer_id + 1
elif block['type'] == 'upsample':
layer_id = layer_id + 1
else:
print('unknow layer type %s ' % block['type'])
layer_id = layer_id + 1
print('save prototxt to %s' % protofile)
save_prototxt(net_info , protofile, region=True)
print('save caffemodel to %s' % caffemodel)
net.save(caffemodel)
def load_conv2caffe(buf, start, conv_param):
weight = conv_param[0].data
bias = conv_param[1].data
conv_param[1].data[...] = np.reshape(buf[start:start+bias.size], bias.shape); start = start + bias.size
conv_param[0].data[...] = np.reshape(buf[start:start+weight.size], weight.shape); start = start + weight.size
return start
def load_fc2caffe(buf, start, fc_param):
weight = fc_param[0].data
bias = fc_param[1].data
fc_param[1].data[...] = np.reshape(buf[start:start+bias.size], bias.shape); start = start + bias.size
fc_param[0].data[...] = np.reshape(buf[start:start+weight.size], weight.shape); start = start + weight.size
return start
def load_conv_bn2caffe(buf, start, conv_param, bn_param, scale_param):
conv_weight = conv_param[0].data
running_mean = bn_param[0].data
running_var = bn_param[1].data
scale_weight = scale_param[0].data
scale_bias = scale_param[1].data
scale_param[1].data[...] = np.reshape(buf[start:start+scale_bias.size], scale_bias.shape); start = start + scale_bias.size
#print scale_bias.size
#print scale_bias
scale_param[0].data[...] = np.reshape(buf[start:start+scale_weight.size], scale_weight.shape); start = start + scale_weight.size
#print scale_weight.size
bn_param[0].data[...] = np.reshape(buf[start:start+running_mean.size], running_mean.shape); start = start + running_mean.size
#print running_mean.size
bn_param[1].data[...] = np.reshape(buf[start:start+running_var.size], running_var.shape); start = start + running_var.size
#print running_var.size
bn_param[2].data[...] = np.array([1.0])
conv_param[0].data[...] = np.reshape(buf[start:start+conv_weight.size], conv_weight.shape); start = start + conv_weight.size
#print conv_weight.size
return start
def cfg2prototxt(cfgfile):
blocks = parse_cfg(cfgfile)
prev_filters = 3
layers = []
props = OrderedDict()
bottom = 'data'
layer_id = 1
topnames = dict()
for block in blocks:
if block['type'] == 'net':
props['name'] = 'Darkent2Caffe'
props['input'] = 'data'
props['input_dim'] = ['1']
props['input_dim'].append(block['channels'])
props['input_dim'].append(block['height'])
props['input_dim'].append(block['width'])
continue
elif block['type'] == 'convolutional':
conv_layer = OrderedDict()
conv_layer['bottom'] = bottom
if block.has_key('name'):
conv_layer['top'] = block['name']
conv_layer['name'] = block['name']
else:
conv_layer['top'] = 'layer%d-conv' % layer_id
conv_layer['name'] = 'layer%d-conv' % layer_id
conv_layer['type'] = 'Convolution'
convolution_param = OrderedDict()
convolution_param['num_output'] = block['filters']
prev_filters = block['filters']
convolution_param['kernel_size'] = block['size']
if block['pad'] == '1':
convolution_param['pad'] = str(int(convolution_param['kernel_size'])/2)
convolution_param['stride'] = block['stride']
if block['batch_normalize'] == '1':
convolution_param['bias_term'] = 'false'
else:
convolution_param['bias_term'] = 'true'
conv_layer['convolution_param'] = convolution_param
layers.append(conv_layer)
bottom = conv_layer['top']
if block['batch_normalize'] == '1':
bn_layer = OrderedDict()
bn_layer['bottom'] = bottom
bn_layer['top'] = bottom
if block.has_key('name'):
bn_layer['name'] = '%s-bn' % block['name']
else:
bn_layer['name'] = 'layer%d-bn' % layer_id
bn_layer['type'] = 'BatchNorm'
batch_norm_param = OrderedDict()
batch_norm_param['use_global_stats'] = 'true'
bn_layer['batch_norm_param'] = batch_norm_param
layers.append(bn_layer)
scale_layer = OrderedDict()
scale_layer['bottom'] = bottom
scale_layer['top'] = bottom
if block.has_key('name'):
scale_layer['name'] = '%s-scale' % block['name']
else:
scale_layer['name'] = 'layer%d-scale' % layer_id
scale_layer['type'] = 'Scale'
scale_param = OrderedDict()
scale_param['bias_term'] = 'true'
scale_layer['scale_param'] = scale_param
layers.append(scale_layer)
if block['activation'] != 'linear':
relu_layer = OrderedDict()
relu_layer['bottom'] = bottom
relu_layer['top'] = bottom
if block.has_key('name'):
relu_layer['name'] = '%s-act' % block['name']
else:
relu_layer['name'] = 'layer%d-act' % layer_id
relu_layer['type'] = 'ReLU'
if block['activation'] == 'leaky':
relu_param = OrderedDict()
relu_param['negative_slope'] = '0.1'
relu_layer['relu_param'] = relu_param
layers.append(relu_layer)
topnames[layer_id] = bottom
layer_id = layer_id+1
elif block['type'] == 'depthwise_convolutional':
conv_layer = OrderedDict()
conv_layer['bottom'] = bottom
if block.has_key('name'):
conv_layer['top'] = block['name']
conv_layer['name'] = block['name']
else:
conv_layer['top'] = 'layer%d-dwconv' % layer_id
conv_layer['name'] = 'layer%d-dwconv' % layer_id
conv_layer['type'] = 'ConvolutionDepthwise'
convolution_param = OrderedDict()
convolution_param['num_output'] = prev_filters
convolution_param['kernel_size'] = block['size']
if block['pad'] == '1':
convolution_param['pad'] = str(int(convolution_param['kernel_size'])/2)
convolution_param['stride'] = block['stride']
if block['batch_normalize'] == '1':
convolution_param['bias_term'] = 'false'
else:
convolution_param['bias_term'] = 'true'
conv_layer['convolution_param'] = convolution_param
layers.append(conv_layer)
bottom = conv_layer['top']
if block['batch_normalize'] == '1':
bn_layer = OrderedDict()
bn_layer['bottom'] = bottom
bn_layer['top'] = bottom
if block.has_key('name'):
bn_layer['name'] = '%s-bn' % block['name']
else:
bn_layer['name'] = 'layer%d-bn' % layer_id
bn_layer['type'] = 'BatchNorm'
batch_norm_param = OrderedDict()
batch_norm_param['use_global_stats'] = 'true'
bn_layer['batch_norm_param'] = batch_norm_param
layers.append(bn_layer)
scale_layer = OrderedDict()
scale_layer['bottom'] = bottom
scale_layer['top'] = bottom
if block.has_key('name'):
scale_layer['name'] = '%s-scale' % block['name']
else:
scale_layer['name'] = 'layer%d-scale' % layer_id
scale_layer['type'] = 'Scale'
scale_param = OrderedDict()
scale_param['bias_term'] = 'true'
scale_layer['scale_param'] = scale_param
layers.append(scale_layer)
if block['activation'] != 'linear':
relu_layer = OrderedDict()
relu_layer['bottom'] = bottom
relu_layer['top'] = bottom
if block.has_key('name'):
relu_layer['name'] = '%s-act' % block['name']
else:
relu_layer['name'] = 'layer%d-act' % layer_id
relu_layer['type'] = 'ReLU'
if block['activation'] == 'leaky':
relu_param = OrderedDict()
relu_param['negative_slope'] = '0.1'
relu_layer['relu_param'] = relu_param
layers.append(relu_layer)
topnames[layer_id] = bottom
layer_id = layer_id+1
elif block['type'] == 'maxpool':
max_layer = OrderedDict()
max_layer['bottom'] = bottom
if block.has_key('name'):
max_layer['top'] = block['name']
max_layer['name'] = block['name']
else:
max_layer['top'] = 'layer%d-maxpool' % layer_id
max_layer['name'] = 'layer%d-maxpool' % layer_id
max_layer['type'] = 'Pooling'
pooling_param = OrderedDict()
pooling_param['stride'] = block['stride']
pooling_param['pool'] = 'MAX'
if (int(block['size']) - int(block['stride'])) % 2 == 0:
pooling_param['kernel_size'] = block['size']
pooling_param['pad'] = str((int(block['size'])-1)/2)
if (int(block['size']) - int(block['stride'])) % 2 == 1:
pooling_param['kernel_size'] = str(int(block['size']) + 1)
pooling_param['pad'] = str((int(block['size']) + 1)/2)
max_layer['pooling_param'] = pooling_param
layers.append(max_layer)
bottom = max_layer['top']
topnames[layer_id] = bottom
layer_id = layer_id+1
elif block['type'] == 'avgpool':
avg_layer = OrderedDict()
avg_layer['bottom'] = bottom
if block.has_key('name'):
avg_layer['top'] = block['name']
avg_layer['name'] = block['name']
else:
avg_layer['top'] = 'layer%d-avgpool' % layer_id
avg_layer['name'] = 'layer%d-avgpool' % layer_id
avg_layer['type'] = 'Pooling'
pooling_param = OrderedDict()
pooling_param['kernel_size'] = 7
pooling_param['stride'] = 1
pooling_param['pool'] = 'AVE'
avg_layer['pooling_param'] = pooling_param
layers.append(avg_layer)
bottom = avg_layer['top']
topnames[layer_id] = bottom
layer_id = layer_id+1
elif block['type'] == 'region':
if True:
region_layer = OrderedDict()
region_layer['bottom'] = bottom
if block.has_key('name'):
region_layer['top'] = block['name']
region_layer['name'] = block['name']
else:
region_layer['top'] = 'layer%d-region' % layer_id
region_layer['name'] = 'layer%d-region' % layer_id
region_layer['type'] = 'Region'
region_param = OrderedDict()
region_param['anchors'] = block['anchors'].strip()
region_param['classes'] = block['classes']
region_param['num'] = block['num']
region_layer['region_param'] = region_param
layers.append(region_layer)
bottom = region_layer['top']
topnames[layer_id] = bottom
layer_id = layer_id + 1
elif block['type'] == 'route':
route_layer = OrderedDict()
layer_name = str(block['layers']).split(',')
#print(layer_name[0])
bottom_layer_size = len(str(block['layers']).split(','))
#print(bottom_layer_size)
if(1 == bottom_layer_size):
prev_layer_id = layer_id + int(block['layers'])
bottom = topnames[prev_layer_id]
#topnames[layer_id] = bottom
route_layer['bottom'] = bottom
if(2 == bottom_layer_size):
prev_layer_id1 = layer_id + int(layer_name[0])
#print(prev_layer_id1)
prev_layer_id2 = int(layer_name[1]) + 1
print(topnames)
bottom1 = topnames[prev_layer_id1]
bottom2 = topnames[prev_layer_id2]
route_layer['bottom'] = [bottom1, bottom2]
if(4 == bottom_layer_size):
prev_layer_id1 = layer_id + int(layer_name[0])
prev_layer_id2 = layer_id + int(layer_name[1])
prev_layer_id3 = layer_id + int(layer_name[2])
prev_layer_id4 = layer_id + int(layer_name[3])
bottom1 = topnames[prev_layer_id1]
bottom2 = topnames[prev_layer_id2]
bottom3 = topnames[prev_layer_id3]
bottom4 = topnames[prev_layer_id4]
route_layer['bottom'] = [bottom1, bottom2,bottom3,bottom4]
if block.has_key('name'):
route_layer['top'] = block['name']
route_layer['name'] = block['name']
else:
route_layer['top'] = 'layer%d-route' % layer_id
route_layer['name'] = 'layer%d-route' % layer_id
route_layer['type'] = 'Concat'
print(route_layer)
layers.append(route_layer)
bottom = route_layer['top']
print(layer_id)
topnames[layer_id] = bottom
layer_id = layer_id + 1
elif block['type'] == 'upsample':
upsample_layer = OrderedDict()
print(block['stride'])
upsample_layer['bottom'] = bottom
if block.has_key('name'):
upsample_layer['top'] = block['name']
upsample_layer['name'] = block['name']
else:
upsample_layer['top'] = 'layer%d-upsample' % layer_id
upsample_layer['name'] = 'layer%d-upsample' % layer_id
upsample_layer['type'] = 'Upsample'
upsample_param = OrderedDict()
upsample_param['scale'] = block['stride']
upsample_layer['upsample_param'] = upsample_param
print(upsample_layer)
layers.append(upsample_layer)
bottom = upsample_layer['top']
print('upsample:',layer_id)
topnames[layer_id] = bottom
layer_id = layer_id + 1
elif block['type'] == 'shortcut':
prev_layer_id1 = layer_id + int(block['from'])
prev_layer_id2 = layer_id - 1
bottom1 = topnames[prev_layer_id1]
bottom2= topnames[prev_layer_id2]
shortcut_layer = OrderedDict()
shortcut_layer['bottom'] = [bottom1, bottom2]
if block.has_key('name'):
shortcut_layer['top'] = block['name']
shortcut_layer['name'] = block['name']
else:
shortcut_layer['top'] = 'layer%d-shortcut' % layer_id
shortcut_layer['name'] = 'layer%d-shortcut' % layer_id
shortcut_layer['type'] = 'Eltwise'
eltwise_param = OrderedDict()
eltwise_param['operation'] = 'SUM'
shortcut_layer['eltwise_param'] = eltwise_param
layers.append(shortcut_layer)
bottom = shortcut_layer['top']
if block['activation'] != 'linear':
relu_layer = OrderedDict()
relu_layer['bottom'] = bottom
relu_layer['top'] = bottom
if block.has_key('name'):
relu_layer['name'] = '%s-act' % block['name']
else:
relu_layer['name'] = 'layer%d-act' % layer_id
relu_layer['type'] = 'ReLU'
if block['activation'] == 'leaky':
relu_param = OrderedDict()
relu_param['negative_slope'] = '0.1'
relu_layer['relu_param'] = relu_param
layers.append(relu_layer)
topnames[layer_id] = bottom
layer_id = layer_id + 1
elif block['type'] == 'connected':
fc_layer = OrderedDict()
fc_layer['bottom'] = bottom
if block.has_key('name'):
fc_layer['top'] = block['name']
fc_layer['name'] = block['name']
else:
fc_layer['top'] = 'layer%d-fc' % layer_id
fc_layer['name'] = 'layer%d-fc' % layer_id
fc_layer['type'] = 'InnerProduct'
fc_param = OrderedDict()
fc_param['num_output'] = int(block['output'])
fc_layer['inner_product_param'] = fc_param
layers.append(fc_layer)
bottom = fc_layer['top']
if block['activation'] != 'linear':
relu_layer = OrderedDict()
relu_layer['bottom'] = bottom
relu_layer['top'] = bottom
if block.has_key('name'):
relu_layer['name'] = '%s-act' % block['name']
else:
relu_layer['name'] = 'layer%d-act' % layer_id
relu_layer['type'] = 'ReLU'
if block['activation'] == 'leaky':
relu_param = OrderedDict()
relu_param['negative_slope'] = '0.1'
relu_layer['relu_param'] = relu_param
layers.append(relu_layer)
topnames[layer_id] = bottom
layer_id = layer_id+1
else:
print('unknow layer type %s ' % block['type'])
topnames[layer_id] = bottom
layer_id = layer_id + 1
net_info = OrderedDict()
net_info['props'] = props
net_info['layers'] = layers
return net_info
if __name__ == '__main__':
import sys
if len(sys.argv) != 5:
print('try:')
print('python darknet2caffe.py tiny-yolo-voc.cfg tiny-yolo-voc.weights tiny-yolo-voc.prototxt tiny-yolo-voc.caffemodel')
print('')
print('please add name field for each block to avoid generated name')
exit()
cfgfile = sys.argv[1]
#net_info = cfg2prototxt(cfgfile)
#print_prototxt(net_info)
#save_prototxt(net_info, 'tmp.prototxt')
weightfile = sys.argv[2]
protofile = sys.argv[3]
caffemodel = sys.argv[4]
darknet2caffe(cfgfile, weightfile, protofile, caffemodel)
我遵循here中描述的所有步骤,甚至创建了上采样层(通过创建三个文件并编辑caffe.proto。 我想知道自创建上采样层以来为什么会发生此错误。 任何建议都会有所帮助。