查找最接近的值对并在Python中计算均值

时间:2019-02-25 07:28:20

标签: python pandas

我有一个数据框,如下所示:

import pandas as pd
import numpy as np
import random

np.random.seed(5)
df = pd.DataFrame(np.random.randint(100, size=(100, 3)), 
                  columns=list('ABC'), 
                  index=['{}'.format(i) for i in range(100)])

ix = [(row, col) for row in range(df.shape[0]) for col in range(df.shape[1])]
for row, col in random.sample(ix, int(round(.1*len(ix)))):
    df.iat[row, col] = np.nan

df = df.mask(np.random.random(df.shape) < .05)  #insert 5% of NaNs  

df.head()

    A   B   C
0  99  78  61
1  16  73   8
2  62  27  30
3  80   7  76
4  15  53  80

如果我想从columns A, B and C中找到最接近的值对,并将对值的平均值计算为column D?我该如何在熊猫中做到这一点?谢谢。

由于我的真实数据有一​​些NaNs,所以如果某些行只有两个值,则将其均值计算为columns D,如果某些行只有一个值,则将其取值{{1 }}。

我尝试过计算每对的绝对值,从column D中找到最小值,然后计算最小对的均值,但我认为这样做可能更好。

columns diffAB, diffAC and diffBC

更新:

cols = ['A', 'B', 'C']
df[cols]=df[cols].fillna(0)

df['diffAB'] = (df['A'] - df['B']).abs()
df['diffAC'] = (df['A'] - df['C']).abs()
df['diffBC'] = (df['B'] - df['C']).abs()

预期结果:

df['Count'] = df[['A', 'B', 'C']].apply(lambda x: sum(x.notnull()), axis=1)

if df['Count'] == 3:
    def meanFunc(row):
        minDiffPairIndex = np.argmin( [abs(row['A']-row['B']), abs(row['B']-row['C']), abs(row['C']-row['A']) ])      
        meanDict = {0: np.mean([row['A'], row['B']]), 1: np.mean([row['B'], row['C']]), 2: np.mean([row['C'], row['A']])}
        return meanDict[minDiffPairIndex]
if df['Count'] == 2:
    ...

3 个答案:

答案 0 :(得分:3)

我在这里使用numpy:

In [11]: x = df.values

In [12]: x.sort()

In [13]: (x[:, 1:] + x[:, :-1])/2
Out[13]:
array([[69.5, 88.5],
       [12. , 44.5],
       [28.5, 46. ],
       [41.5, 78. ],
       [34. , 66.5]])

In [14]: np.diff(x)
Out[14]:
array([[17, 21],
       [ 8, 57],
       [ 3, 32],
       [69,  4],
       [38, 27]])

In [15]: np.diff(x).argmin(axis=1)
Out[15]: array([0, 0, 0, 1, 1])

In [16]: ((x[:, 1:] + x[:, :-1])/2)[np.arange(len(x)), np.diff(x).argmin(axis=1)]
Out[16]: array([69.5, 12. , 28.5, 78. , 66.5])

In [17]: df["D"] = ((x[:, 1:] + x[:, :-1])/2)[np.arange(len(x)), np.diff(x).argmin(axis=1)]

答案 1 :(得分:1)

这可能不是最快的方法,但是非常简单。

def func(x):
    a,b,c = x
    diffs = np.abs(np.array([a-b,a-c,b-c]))
    means = np.array([(a+b)/2,(a+c)/2,(b+c)/2])
    return means[diffs.argmin()]

df["D"] = df.apply(func,axis=1)
df.head()

答案 2 :(得分:1)

假设您需要一个附加的num_page_items = len(odds) for i in range(0, num_page_items, 2): Home = odds[i].text # Starts from 0, goes till num_page_items, incrementing by 2 (even indices) for i in range(1, num_page_items, 2): Away = odds[i].text # Starts from 1, goes till num_page_items, incrementing by 2 (odd indices) ,其值对的平均值在三个可能的对之间的差异最小:column D,下面的代码应该可以工作:

已更新:

(colA, colB), (colB, colC) and (colC, colA)

以上代码以以下方式处理行中的def meanFunc(row): nonNanValues = [x for x in list(row) if str(x) != 'nan'] numOfNonNaN = len(nonNanValues) if(numOfNonNaN == 0): return 0 if(numOfNonNaN == 1): return nonNanValues[0] if(numOfNonNaN == 2): return np.mean(nonNanValues) if(numOfNonNaN == 3): minDiffPairIndex = np.argmin( [abs(row['A']-row['B']), abs(row['B']-row['C']), abs(row['C']-row['A']) ]) meanDict = {0: np.mean([row['A'], row['B']]), 1: np.mean([row['B'], row['C']]), 2: np.mean([row['C'], row['A']])} return meanDict[minDiffPairIndex] df['D'] = df.apply(meanFunc, axis=1) 值:如果所有三个值均为NaN,则NaN的值为column D;如果两个值为{{1 }},然后将非NaN值分配给0,如果正好存在一个NaN,则将其余两个的平均值分配给column D

上一个:

NaN

希望我能正确理解您的问题。