我想使用conv3d在同一CNN结构中同时输入8张图像。我的CNN模型如下:
def build(sample, frame, height, width, channels, classes):
model = Sequential()
inputShape = (sample, frame, height, width, channels)
chanDim = -1
if K.image_data_format() == "channels_first":
inputShape = (sample, frame, channels, height, width)
chanDim = 1
model.add(Conv3D(32, (3, 3, 3), padding="same", input_shape=inputShape))
model.add(Activation("relu"))
model.add(BatchNormalization(axis=chanDim))
model.add(MaxPooling3D(pool_size=(2, 2, 2), padding="same", data_format="channels_last"))
model.add(Dropout(0.25))
model.add(Conv3D(64, (3, 3, 3), padding="same"))
model.add(Activation("relu"))
model.add(BatchNormalization(axis=chanDim))
model.add(MaxPooling3D(pool_size=(2, 2, 2), padding="same", data_format="channels_last"))
model.add(Dropout(0.25))
model.add(Flatten())
model.add(Dense(128)) #(Dense(1024))
model.add(Activation("relu"))
model.add(BatchNormalization())
model.add(Dropout(0.5))
# softmax classifier
model.add(Dense(classes))
model.add(Activation("softmax")
模型训练如下:
IMAGE_DIMS = (57, 8, 60, 60, 3) # since I have 460 images so 57 sample with 8 image each
data = np.array(data, dtype="float") / 255.0
labels = np.array(labels)
# binarize the labels
lb = LabelBinarizer()
labels = lb.fit_transform(labels)
# note: data is a list of all dataset images
(trainX, testX, trainY, testY) train_test_split(data, labels, test_size=0.2, random_state=42)
aug = ImageDataGenerator(rotation_range=25, width_shift_range=0.1, height_shift_range=0.1, shear_range=0.2, zoom_range=0.2, horizontal_flip=True, fill_mode="nearest")
# initialize the model
model = CNN_Network.build(sample= IMAGE_DIMS[0], frame=IMAGE_DIMS[1],
height = IMAGE_DIMS[2], width=IMAGE_DIMS[3],
channels=IMAGE_DIMS[4], classes=len(lb.classes_))
opt = Adam(lr=INIT_LR, decay=INIT_LR / EPOCHS)
model.compile(loss="categorical_crossentropy", optimizer= opt, metrics=["accuracy"])
# train the network
model.fit_generator(
aug.flow(trainX, trainY, batch_size=BS),
validation_data=(testX, testY),
steps_per_epoch=len(trainX) // BS,
epochs=EPOCHS, verbose=1)
我对input_shape感到困惑,我知道Conv3D需要5D输入,输入是从keras添加批处理的4D,但是我遇到以下错误:
ValueError: Error when checking input: expected conv3d_1_input to have 5 dimensions, but got array with shape (92, 60, 60, 3)
谁能帮助我该怎么办? 92的结果是什么,我用(57,8,60,60,3)确定input_shape。我的input_shape应该是什么,才能同时将8张彩色图像输入到同一模型。
答案 0 :(得分:0)
Here是用于将5D输入到Conv3D网络的自定义图像数据生成器。希望能帮助到你。这是一个有关如何使用它的示例:
from tweaked_ImageGenerator_v2 import ImageDataGenerator
datagen = ImageDataGenerator()
train_data=datagen.flow_from_directory('path/to/data', target_size=(x, y), batch_size=32, frames_per_step=4)
OR
您可以构建自己的5D张量:
frames_folder = 'path/to/folder'
X_data = []
y_data = []
list_of_sent = os.listdir(frames_folder)
print (list_of_sent)
class_num = 0
time_steps = 0
frames = []
for i in list_of_sent:
classes_folder = str(frames_folder + '/' + i) #path to each class
print (classes_folder)
list_of_frames = os.listdir(classes_folder)
time_steps= 0
frames = []
for filename in sorted(list_of_frames):
if ( time_steps == 8 ):
X_data.append(frames) #appending each tensor of 8 frames resized to 110,110
y_data.append(class_num) #appending a class label to the set of 8 frames
j = 0
frames = []
else:
time_steps+=1
filename = cv2.imread(vid + '/' + filename)
filename = cv2.resize(filename,(110, 110),interpolation=cv2.INTER_AREA)
frames.append(filename)
class_num+=1
X_data = np.array(X_data)
y_data = np.array(y_data)
对于上面的代码段,文件夹结构必须像这样:
data/
class0/
img001.jpg
img002.jpg
...
class1/
img001.jpg
img002.jpg
...
答案 1 :(得分:0)
输入形状必须没有样本,所以代替
inputShape = (sample, frame, height, width, channels)
试试:
inputShape = (frame, height, width, channels)