这是我的输出结果。有没有一种方法可以消除所有行的频率?
输入:
by_city = city_df.groupby("city")
total_driver_city = by_city["driver_count"].value_counts()
total_driver_city
输出:
city driver_count
Amandaburgh 12 1.0
Barajasview 26 1.0
Barronchester 11 1.0
Bethanyland 22 1.0
Bradshawfurt 7 1.0
Brandonfort 10 1.0
Carriemouth 52 1.0
Christopherfurt 41 1.0
Colemanland 23 1.0
Davidfurt 23 1.0
Deanville 49 1.0
East Aaronbury 7 1.0
East Danielview 22 1.0
East Kaylahaven 65 1.0
答案 0 :(得分:1)
或使用iloc
:
df = total_driver_city.reset_index().iloc[:,:-1]
答案 1 :(得分:0)
我相信您需要转换MultiIndex Series
(但是如果所有值都是1
,则会得到与city_df
相同的列):
df = total_driver_city.reset_index(name='tmp').drop('tmp', axis=1)
print (df)
city driver_count
0 Amandaburgh 12
1 Barajasview 26
2 Barronchester 11
3 Bethanyland 22
4 Bradshawfurt 7
5 Brandonfort 10
6 Carriemouth 52
7 Christopherfurt 41
8 Colemanland 23
9 Davidfurt 23
10 Deanville 49
11 East Aaronbury 7
12 East Danielview 22
13 East Kaylahaven 65
df = total_driver_city.index.to_frame().reset_index(drop=True)
print (df)
city driver_count
0 Amandaburgh 12
1 Barajasview 26
2 Barronchester 11
3 Bethanyland 22
4 Bradshawfurt 7
5 Brandonfort 10
6 Carriemouth 52
7 Christopherfurt 41
8 Colemanland 23
9 Davidfurt 23
10 Deanville 49
11 East Aaronbury 7
12 East Danielview 22
13 East Kaylahaven 65