如何将可变参数模板参数拆分为两半?类似的东西:
template <int d> struct a {
std::array <int, d> p, q;
template <typename ... T> a (T ... t) : p ({half of t...}), q ({other half of t...}) {}
};
答案 0 :(得分:11)
吕克的解决方案干净简洁,但却非常缺乏乐趣 因为只有一种正确的方法可以使用可变参数模板,并且滥用它们来做疯狂的过度复杂的元编程实现:)
像这样:
template <class T, size_t... Indx, class... Ts>
std::array<T, sizeof...(Indx)>
split_array_range_imp(pack_indices<Indx...> pi, Ts... ts)
{
return std::array<T, sizeof...(Indx)>{get<Indx>(ts...)...}; //TADA
}
template <class T, size_t begin, size_t end, class... Ts>
std::array<T, end - begin>
split_array_range(Ts... ts)
{
typename make_pack_indices<end, begin>::type indices;
return split_array_range_imp<T>(indices, ts...);
}
template <size_t N>
struct DoubleArray
{
std::array <int, N> p, q;
template <typename ... Ts>
DoubleArray (Ts ... ts) :
p( split_array_range<int, 0 , sizeof...(Ts) / 2 >(ts...) ),
q( split_array_range<int, sizeof...(Ts) / 2, sizeof...(Ts) >(ts...) )
{
}
};
int main()
{
DoubleArray<3> mya{1, 2, 3, 4, 5, 6};
std::cout << mya.p[0] << "\n" << mya.p[1] << "\n" << mya.p[2] << std::endl;
std::cout << mya.q[0] << "\n" << mya.q[1] << "\n" << mya.q[2] << std::endl;
}
它很短,除了我们需要编写一些帮助程序:
首先我们需要结构make_pack_indices,它用于在编译时生成一个整数范围。例如,make_pack_indices<5, 0>::type
实际上是pack_indices<0, 1, 2, 3, 4>
template <size_t...>
struct pack_indices {};
template <size_t Sp, class IntPack, size_t Ep>
struct make_indices_imp;
template <size_t Sp, size_t ... Indices, size_t Ep>
struct make_indices_imp<Sp, pack_indices<Indices...>, Ep>
{
typedef typename make_indices_imp<Sp+1, pack_indices<Indices..., Sp>, Ep>::type type;
};
template <size_t Ep, size_t ... Indices>
struct make_indices_imp<Ep, pack_indices<Indices...>, Ep>
{
typedef pack_indices<Indices...> type;
};
template <size_t Ep, size_t Sp = 0>
struct make_pack_indices
{
static_assert(Sp <= Ep, "__make_tuple_indices input error");
typedef typename make_indices_imp<Sp, pack_indices<>, Ep>::type type;
};
我们还需要一个get()函数,非常类似于std :: get for tuple,例如std::get<N>(ts...)
返回参数包的第N个元素。
template <class R, size_t Ip, size_t Ij, class... Tp>
struct Get_impl
{
static R& dispatch(Tp...);
};
template<class R, size_t Ip, size_t Jp, class Head, class... Tp>
struct Get_impl<R, Ip, Jp, Head, Tp...>
{
static R& dispatch(Head& h, Tp&... tps)
{
return Get_impl<R, Ip, Jp + 1, Tp...>::dispatch(tps...);
}
};
template<size_t Ip, class Head, class... Tp>
struct Get_impl<Head, Ip, Ip, Head, Tp...>
{
static Head& dispatch(Head& h, Tp&... tps)
{
return h;
}
};
template <size_t Ip, class ... Tp>
typename pack_element<Ip, Tp...>::type&
get(Tp&... tps)
{
return Get_impl<typename pack_element<Ip, Tp...>::type, Ip, 0, Tp...>::dispatch(tps...);
}
但是为了构建get(),我们还需要一个pack_element帮助器结构,再次非常类似于std :: tuple_element,例如pack_element<N, Ts...>::type
是参数包的第N种类型。
template <size_t _Ip, class _Tp>
class pack_element_imp;
template <class ..._Tp>
struct pack_types {};
template <size_t Ip>
class pack_element_imp<Ip, pack_types<> >
{
public:
static_assert(Ip == 0, "tuple_element index out of range");
static_assert(Ip != 0, "tuple_element index out of range");
};
template <class Hp, class ...Tp>
class pack_element_imp<0, pack_types<Hp, Tp...> >
{
public:
typedef Hp type;
};
template <size_t Ip, class Hp, class ...Tp>
class pack_element_imp<Ip, pack_types<Hp, Tp...> >
{
public:
typedef typename pack_element_imp<Ip-1, pack_types<Tp...> >::type type;
};
template <size_t Ip, class ...Tp>
class pack_element
{
public:
typedef typename pack_element_imp<Ip, pack_types<Tp...> >::type type;
};
我们走了。
实际上我真的不明白为什么pack_element和get()不在标准库中。这些助手是为std :: tuple而存在的,为什么不用于参数包?
注意:我对pack_element和make_pack_indices的实现是对libc ++中std :: tuple_element和__make_tuple_indices实现的直接转换。
答案 1 :(得分:4)
我们仍然缺少很多辅助工具来操作可变参数包(或者我不知道它们)。在一个漂亮的Boost库带给我们之前,我们仍然可以编写自己的。
例如,如果您愿意将数组初始化推迟到构造函数体,则可以创建并使用将参数包的一部分复制到输出迭代器的函数:
#include <array>
#include <cassert>
#include <iostream>
// Copy n values from the parameter pack to an output iterator
template < typename OutputIterator >
void copy_n( size_t n, OutputIterator )
{
assert ( n == 0 );
}
template < typename OutputIterator, typename T, typename... Args >
void copy_n( size_t n, OutputIterator out, const T & value, Args... args )
{
if ( n > 0 )
{
*out = value;
copy_n( n - 1, ++out, args... );
}
}
// Copy n values from the parameter pack to an output iterator, starting at
// the "beginth" element
template < typename OutputIterator >
void copy_range( size_t begin, size_t size, OutputIterator out )
{
assert( size == 0 );
}
template < typename OutputIterator, typename T, typename... Args >
void copy_range( size_t begin, size_t size, OutputIterator out, T value, Args... args )
{
if ( begin == 0 )
{
copy_n( size, out, value, args... );
}
else
{
copy_range( begin - 1, size, out, args... );
}
}
template < int N >
struct DoubleArray
{
std::array< int, N > p;
std::array< int, N > q;
template < typename... Args >
DoubleArray ( Args... args )
{
copy_range( 0, N, p.begin(), args... );
copy_range( N, N, q.begin(), args... );
}
};
int main()
{
DoubleArray<3> mya(1, 2, 3, 4, 5, 6);
std::cout << mya.p[0] << mya.p[2] << std::endl;
std::cout << mya.q[0] << mya.q[2] << std::endl;
}
// Ouput:
// 13
// 46
正如您所看到的,您可以(不是那样)轻松创建自己的算法来操作参数包;所有需要的是对递归和模式匹配的良好理解(与进行模板元编程时一样......)。
答案 2 :(得分:3)
请注意,在这种特殊情况下,您可以使用std::initializer_list
:
template<int... Is> struct index_sequence{};
template<int N, int... Is> struct make_index_sequence
{
typedef typename make_index_sequence<N - 1, N - 1, Is...>::type type;
};
template<int... Is> struct make_index_sequence<0, Is...>
{
typedef index_sequence<Is...> type;
};
template <int d> struct a {
std::array <int, d> p, q;
constexpr a (const std::initializer_list<int>& t) :
a(t, typename make_index_sequence<d>::type())
{}
private:
template <int... Is>
constexpr a(const std::initializer_list<int>& t, index_sequence<Is...>) :
p ({{(*(t.begin() + Is))...}}),
q ({{(*(t.begin() + d + Is))...}})
{}
};
答案 3 :(得分:0)
这是另一种解决方案:
#include <array>
#include <tuple>
#include <iostream>
template <int i, int o> struct cpyarr_ {
template < typename T, typename L > static void f (T const& t, L &l) {
l[i-1] = std::get<i-1+o> (t);
cpyarr_<i-1,o>::f (t,l);
}
};
template <int o> struct cpyarr_ <0,o> {
template < typename T, typename L > static void f (T const&, L&) {}
};
template <int i, int o, typename U, typename ... T> std::array < U, i > cpyarr (U u, T... t) {
std::tuple < U, T... > l { u, t... };
std::array < U, i > a;
cpyarr_<i,o>::f (l, a); // because std::copy uses call to memmov which is not optimized away (at least with g++ 4.6)
return a;
}
template <int d> struct a {
std::array <int, d> p, q;
template <typename ... T> a (T ... t) : p (cpyarr<d,0> (t...)), q (cpyarr<d,d> (t...)) {}
};
int main () {
a <5> x { 0,1,2,3,4,5,6,7,8,9 };
for (int i = 0; i < 5; i++)
std::cout << x.p[i] << " " << x.q[i] << "\n";
}
答案 4 :(得分:0)
我知道这个问题已经很老了,但我昨天才找到解决非常类似问题的方法。我自己制定了一个解决方案并最终编写了一个小型库,我相信它可以满足您的需求。如果您仍有兴趣,可以找到说明here。