我处于以当前特权级别(CPL = 0)运行的32位保护模式。我试图通过将EFLAGS.VM(位17)标志设置为1(并将IOPL设置为0)并对我的16位实模式代码执行FAR JMP来进入v8086模式。我使用PUSHF
获取当前标志;将EFLAGS.VM(位17)设置为1;将EFLAGS.IOPL(第22位和第23位)设置为0;用POPF
设置新的EFLAGS。的代码如下:
bits 32
cli
[snip]
pushf ; Get current EFLAGS
pop eax
or eax, 1<<EFLAGS_VM_BIT ; Set VM flag to enter v8086 mode
and eax, ~(3<<EFLAGS_IOPL_BITS)
; Set IOPL to 0
; IF flag already 0 because of earlier CLI
push eax
popf ; Reload new flags
jmp CODE32_SEL:v86_mode_entry
; Far JMP to v8086 entry point
; v8086 code entry point
bits 16
v86_mode_entry:
hlt ; Halt should double fault
[snip]
对于这些测试,我故意使用:
要测试是否已进入v8086模式,请执行HLT
指令。由于我没有适当的中断机制,因此我希望发生双重错误。 hlt
似乎可以正确执行,并且系统位于此处。在到达hlt
的BOCH中,我注意到这些标志是:
eflags 0x00000046: id vip vif ac vm rf nt IOPL=0 of df if tf sf ZF af PF cf
EFLAGS.VM标志被标记为关闭(0),因为它被列为vm
而不是VM
。这不是我所期望的。
hlt
双重错误?此代码的一个最小的完整可验证示例是进入保护模式并执行上述任务的引导加载程序:
VIDEO_TEXT_ADDR EQU 0xb8000 ; Hard code beginning of text video memory
ATTR_BWHITE_ON_GREEN EQU 0x2f ; Bright white on black attribute
ATTR_BWHITE_ON_MAGENTA EQU 0x5f ; Bright White on magenta attribute
PM_MODE_STACK EQU 0x80000 ; Protected mode stack below EBDA
EFLAGS_VM_BIT EQU 17 ; EFLAGS VM bit
EFLAGS_IOPL_BITS EQU 12 ; EFLAGS IOPL bits (bit 12 and bit 13)
; Macro to build a GDT descriptor entry
%define MAKE_GDT_DESC(base, limit, access, flags) \
(((base & 0x00FFFFFF) << 16) | \
((base & 0xFF000000) << 32) | \
(limit & 0x0000FFFF) | \
((limit & 0x00FF0000) << 32) | \
((access & 0xFF) << 40) | \
((flags & 0x0F) << 52))
bits 16
ORG 0x7c00
; Include a BPB (1.44MB floppy with FAT12) to be more compatible with USB floppy media
; %include "bpb.inc"
boot_start:
xor ax, ax ; DS=SS=ES=0
mov ds, ax
mov ss, ax ; Stack at 0x0000:0x7c00
mov sp, 0x7c00
cld ; Set string instructions to use forward movement
; Fast method of enabling A20 may not work on all x86 BIOSes
; It is good enough for emulators and most modern BIOSes
; See: https://wiki.osdev.org/A20_Line
cli ; Disable interrupts for rest of code as we don't
; want A20 code to be interrupted. In protected mode
; we have no IDT so any interrupt that does occur will
; double fault and reboot.
in al, 0x92
or al, 2
out 0x92, al ; Enable A20 using Fast Method
lgdt [gdtr] ; Load our GDT
mov eax, cr0
or eax, 1
mov cr0, eax ; Set protected mode flag
jmp CODE32_SEL:start32 ; FAR JMP to set CS
; v8086 code entry point
v86_mode_entry:
hlt ; Halt
; 32-bit protected mode entry point
bits 32
start32:
mov ax, DATA32_SEL ; Setup the segment registers with data selector
mov ds, ax
mov es, ax
mov ss, ax
mov esp, PM_MODE_STACK ; Set protected mode stack pointer
mov fs, ax ; Not currently using FS and GS
mov gs, ax
mov ah, ATTR_BWHITE_ON_GREEN; Attribute to print with
mov al, ah ; Attribute to clear last line when scrolling
mov esi, in_pm_msg ; Print message that we are in protected mode
call print_string_pm
pushf ; Get current EFLAGS
pop eax
or eax, 1<<EFLAGS_VM_BIT ; Set VM flag to enter v8086 mode
and eax, ~(3<<EFLAGS_IOPL_BITS)
; Set IOPL to 0
; IF flag already 0 because of earlier CLI
push eax
popf ; Reload new flags
jmp CODE32_SEL:v86_mode_entry
; Far JMP to v8086 entry point
; Function: print_string_pm
; Display a string to the console on display page 0 in protected mode.
; Very basic. Doesn't update hardware cursor, doesn't handle scrolling,
; LF, CR, TAB.
;
; Inputs: ESI = Offset of address to print
; AH = Attribute of string to print
; Clobbers: None
; Returns: None
print_string_pm:
push edi
push esi
push eax
mov edi, [vidmem_ptr] ; Start from video address stored at vidmem_ptr
jmp .getchar
.outchar:
stosw ; Output character to video display
.getchar:
lodsb ; Load next character from string
test al, al ; Is character NUL?
jne .outchar ; If not, go back and output character
mov [vidmem_ptr], edi ; Update global video pointer
pop eax
pop esi
pop edi
ret
align 4
vidmem_ptr: dd VIDEO_TEXT_ADDR ; Start console output in upper left of display
in_pm_msg:
db "In 32-bit protected mode!", 0
align 4
gdt_start:
dq MAKE_GDT_DESC(0, 0, 0, 0) ; null descriptor
gdt32_code:
dq MAKE_GDT_DESC(0, 0x00ffffff, 10011010b, 11001111b)
; 32-bit code, 4kb gran, limit 0xffffffff bytes, base=0
gdt32_data:
dq MAKE_GDT_DESC(0, 0x00ffffff, 10010010b, 11001111b)
; 32-bit data, 4kb gran, limit 0xffffffff bytes, base=0
end_of_gdt:
gdtr:
dw end_of_gdt - gdt_start - 1
; limit (Size of GDT - 1)
dd gdt_start ; base of GDT
CODE32_SEL equ gdt32_code - gdt_start
DATA32_SEL equ gdt32_data - gdt_start
; Pad boot sector to 510 bytes and add 2 byte boot signature
TIMES 510-($-$$) db 0
dw 0xaa55
引导加载程序可以通过以下方式生成:
nasm -f bin v86.asm -o v86.bin
它可以在QEMU中运行:
qemu-system-i386 -fda v86.bin
答案 0 :(得分:8)
TL; DR :
问题1 :
POPF
实际上不允许您根据指令集体系结构参考来更改VM标志:
在特权级别0 下以受保护的,兼容性或64位模式运行(或在实地址模式下,等效于特权级别0)时,所有可以修改EFLAGS寄存器中的非保留标志,但RF1,VIP,VIF和VM除外。 VIP,VIF和虚拟机不受影响。
可以使用两种通用机制来设置EFLAGS.VM和enter v8086 mode:
一个切换到80386任务的任务将从新的TSS加载EFLAGS的图像。新任务的TSS必须是80386 TSS,而不是80286 TSS,因为80286 TSS不会存储包含VM标志的EFLAGS的高位字。新EFLAGS的VM位中的值为1表示新任务正在执行8086指令;因此,当从TSS加载段寄存器时,-处理器将像8086那样形成基址。
80386任务过程中的IRET从堆栈中加载EFLAGS的图像。在这种情况下,VM中的值为1表示要向其返回控制的过程是8086过程。执行IRET时的CPL必须为零,否则处理器不会更改VM。
问题2 :
v8086模式仅在32位保护模式(旧模式)下的x86-64处理器上可用。您不能在64位长模式或32位(或16位)兼容模式下使用它。您将不得不将处理器从长模式中切换出来,并进入以CPL = 0运行的32位保护模式(传统模式),并执行上述两种方法之一。这是一项昂贵的(在性能方面)的工作,并且充满了问题。完成后,您将不得不切换回长模式。
如果有一些用例,并且您所在的系统具有多个内核-您可以在使用Bootstrap Processor(BSP)的同时以32位保护模式启动其中一个内核。以长模式运行。
这是最简单的解决方案。如果从32位保护模式(在CPL = 0中)执行IRET
,并且堆栈上的EFLAGS.VM寄存器被设置,则CPU将尝试返回v8086模式,并假定堆栈帧包含所需的帧。进行过渡的信息:
PROTECTED-MODE: [snip] EIP ← Pop(); CS ← Pop(); (* 32-bit pop, high-order 16 bits discarded *) tempEFLAGS ← Pop(); [snip] RETURN-TO-VIRTUAL-8086-MODE: (* Interrupted procedure was in virtual-8086 mode: PE = 1, CPL=0, VM = 1 in flag image *) IF EIP not within CS limit THEN #GP(0); FI; EFLAGS ← tempEFLAGS; ESP ← Pop(); SS ← Pop(); (* Pop 2 words; throw away high-order word *) ES ← Pop(); (* Pop 2 words; throw away high-order word *) DS ← Pop(); (* Pop 2 words; throw away high-order word *) FS ← Pop(); (* Pop 2 words; throw away high-order word *) GS ← Pop(); (* Pop 2 words; throw away high-order word *) CPL ← 3; (* Resume execution in Virtual-8086 mode *) END;
如果以相反的顺序将这些项目推入堆栈并执行iret
,则应该可以进入v8086模式。
V86_STACK_SEG EQU 0x0000 ; v8086 stack SS
V86_STACK_OFS EQU 0x0000 ; v8086 stack SP
V86_CS_SEG EQU 0x0000 ; v8086 code segment CS
EFLAGS_VM_BIT EQU 17 ; EFLAGS VM bit
EFLAGS_BIT1 EQU 1 ; EFLAGS bit 1 (reserved , always 1)
[snip]
xor ebx, ebx ; EBX=0
push ebx ; Real mode GS=0
push ebx ; Real mode FS=0
push ebx ; Real mode DS=0
push ebx ; Real mode ES=0
push V86_STACK_SEG
push V86_STACK_OFS ; v8086 stack SS:SP (grows down from SS:SP)
push dword 1<<EFLAGS_VM_BIT | 1<<EFLAGS_BIT1
; Set VM Bit, IF bit is off, DF=0(forward direction),
; IOPL=0, Reserved bit (bit 1) always 1. Everything
; else 0. These flags will be loaded in the v8086 mode
; during the IRET. We don't want interrupts enabled
; because we have no v86 monitor via protected mode
; GPF handler
push V86_CS_SEG ; Real Mode CS (segment)
push v86_mode_entry ; Entry point (offset)
iret ; Transfer control to v8086 mode and our real mode code
我已经设置了ES = DS = CS = FS = GS = 0并在V86_STACK_SEG:V86_STACK_OFS处设置了实模式堆栈(根据需要定义它们)。 IP设置为v86_mode_entry
标签的偏移量。在上面的代码片段中,我仅将2位设置为1(位1和VM)。位1是EFLAGS中的保留位,总是应该设置为1。EFLAGS中的所有其他标志均为0,因此IOPL = 0。
所有其他寄存器将包含与进入v8086模式之前相同的值。您可能希望将它们归零,以避免信息从32位保护模式(即内核)泄漏到v8086任务中。
使用此代码的一个最小的完整可验证示例是:
VIDEO_TEXT_ADDR EQU 0xb8000 ; Hard code beginning of text video memory
ATTR_BWHITE_ON_GREEN EQU 0x2f ; Bright white on black attribute
ATTR_BWHITE_ON_MAGENTA EQU 0x5f ; Bright White on magenta attribute
PM_MODE_STACK EQU 0x80000 ; Protected mode stack below EBDA
V86_STACK_SEG EQU 0x0000 ; v8086 stack SS
V86_STACK_OFS EQU 0x0000 ; v8086 stack SP
V86_CS_SEG EQU 0x0000 ; v8086 code segment CS
EFLAGS_VM_BIT EQU 17 ; EFLAGS VM bit
EFLAGS_BIT1 EQU 1 ; EFLAGS bit 1 (reserved, always 1)
EFLAGS_IF_BIT EQU 9 ; EFLAGS IF bit
; Macro to build a GDT descriptor entry
%define MAKE_GDT_DESC(base, limit, access, flags) \
(((base & 0x00FFFFFF) << 16) | \
((base & 0xFF000000) << 32) | \
(limit & 0x0000FFFF) | \
((limit & 0x00FF0000) << 32) | \
((access & 0xFF) << 40) | \
((flags & 0x0F) << 52))
bits 16
ORG 0x7c00
; Include a BPB (1.44MB floppy with FAT12) to be more compatible with USB floppy media
; %include "bpb.inc"
boot_start:
xor ax, ax ; DS=SS=ES=0
mov ds, ax
mov ss, ax ; Stack at 0x0000:0x7c00
mov sp, 0x7c00
cld ; Set string instructions to use forward movement
; Fast method of enabling A20 may not work on all x86 BIOSes
; It is good enough for emulators and most modern BIOSes
; See: https://wiki.osdev.org/A20_Line
cli ; Disable interrupts for rest of code as we don't
; want A20 code to be interrupted. In protected mode
; we have no IDT so any interrupt that does occur will
; double fault and reboot.
in al, 0x92
or al, 2
out 0x92, al ; Enable A20 using Fast Method
lgdt [gdtr] ; Load our GDT
mov eax, cr0
or eax, 1
mov cr0, eax ; Set protected mode flag
jmp CODE32_SEL:start32 ; FAR JMP to set CS
; v8086 code entry point
v86_mode_entry:
sub dword [vidmem_ptr], VIDEO_TEXT_ADDR
; Adjust video pointer to be relative to beginning of
; segment 0xb800
mov si, in_v86_msg ; Print in v86 message
mov ah, ATTR_BWHITE_ON_MAGENTA
; Attribute to print with
call print_string_rm_nobios
.endloop:
jmp $ ; Infinite loop since we did code a solution to exit VM
; Function: print_string_rm_nobios
; Display a string to the console on display page 0 in real/v8086 mode
; without using the BIOS. We don't have a proper v8086 monitor so can't
; use BIOS to display.
;
; Very basic. Doesn't update hardware cursor, doesn't handle scrolling,
; LF, CR, TAB.
;
; Inputs: SI = Offset of address to print
; AH = Attribute of string to print
; Clobbers: None
; Returns: None
print_string_rm_nobios:
push di
push si
push ax
push es
mov di, VIDEO_TEXT_ADDR>>4 ; ES=0xb800 (text video mode segment)
mov es, di
mov di, [vidmem_ptr] ; Start from video address stored at vidmem_ptr
jmp .getchar
.outchar:
stosw ; Output character to display
.getchar:
lodsb ; Load next character from string
test al, al ; Is character NUL?
jne .outchar ; If not, go output character
mov [vidmem_ptr], di ; Update global video pointer
pop es
pop ax
pop si
pop di
ret
; 32-bit protected mode entry point
bits 32
start32:
mov ax, DATA32_SEL ; Setup the segment registers with data selector
mov ds, ax
mov es, ax
mov ss, ax
mov esp, PM_MODE_STACK ; Set protected mode stack pointer
mov fs, ax ; Not currently using FS and GS
mov gs, ax
mov ah, ATTR_BWHITE_ON_GREEN; Attribute to print with
mov al, ah ; Attribute to clear last line when scrolling
mov esi, in_pm_msg ; Print message that we are in protected mode
call print_string_pm
xor ebx, ebx ; EBX=0
push ebx ; Real mode GS=0
push ebx ; Real mode FS=0
push ebx ; Real mode DS=0
push ebx ; Real mode ES=0
push V86_STACK_SEG
push V86_STACK_OFS ; v8086 stack SS:SP (grows down from SS:SP)
push dword 1<<EFLAGS_VM_BIT | 1<<EFLAGS_BIT1
; Set VM Bit, IF bit is off, DF=0(forward direction),
; IOPL=0, Reserved bit (bit 1) always 1. Everything
; else 0. These flags will be loaded in the v8086 mode
; during the IRET. We don't want interrupts enabled
; because we have no v86 monitor via protected mode
; GPF handler
push V86_CS_SEG ; Real Mode CS (segment)
push v86_mode_entry ; Entry point (offset)
iret ; Transfer control to v8086 mode and our real mode code
; Function: print_string_pm
; Display a string to the console on display page 0 in protected mode.
; Very basic. Doesn't update hardware cursor, doesn't handle scrolling,
; LF, CR, TAB.
;
; Inputs: ESI = Offset of address to print
; AH = Attribute of string to print
; Clobbers: None
; Returns: None
print_string_pm:
push edi
push esi
push eax
mov edi, [vidmem_ptr] ; Start from video address stored at vidmem_ptr
jmp .getchar
.outchar:
stosw ; Output character to video display
.getchar:
lodsb ; Load next character from string
test al, al ; Is character NUL?
jne .outchar ; If not, go back and output character
mov [vidmem_ptr], edi ; Update global video pointer
pop eax
pop esi
pop edi
ret
align 4
vidmem_ptr: dd VIDEO_TEXT_ADDR ; Start console output in upper left of display
in_pm_msg:
db "In 32-bit protected mode!", 0
in_v86_msg:
db "In v8086 mode!", 0
align 4
gdt_start:
dq MAKE_GDT_DESC(0, 0, 0, 0) ; null descriptor
gdt32_code:
dq MAKE_GDT_DESC(0, 0x00ffffff, 10011010b, 11001111b)
; 32-bit code, 4kb gran, limit 0xffffffff bytes, base=0
gdt32_data:
dq MAKE_GDT_DESC(0, 0x00ffffff, 10010010b, 11001111b)
; 32-bit data, 4kb gran, limit 0xffffffff bytes, base=0
end_of_gdt:
gdtr:
dw end_of_gdt - gdt_start - 1
; limit (Size of GDT - 1)
dd gdt_start ; base of GDT
CODE32_SEL equ gdt32_code - gdt_start
DATA32_SEL equ gdt32_data - gdt_start
; Pad boot sector to 510 bytes and add 2 byte boot signature
TIMES 510-($-$$) db 0
dw 0xaa55
可以将示例代码修改为执行hlt
,这将导致双重错误。它确实可以正确进入v8086模式。我在处于32位保护模式下时打印一个字符串,在进入v8086模式后则打印一个字符串。由于IOPL = 0,因此实模式代码不使用任何特权指令,也不使用任何对中断标志(IF)敏感的指令,也不使用端口IO。如果没有VM Monitor(支持v8086模式的GPF处理程序),则只能使用非特权和非中断标志敏感的指令。由于 INT 指令对IF敏感,因此无法使用BIOS。我直接将字符写到显示器上。
如果您不在操作系统中使用硬件任务切换,则不建议使用此机制。如果您已选择使用硬件任务切换,则使用此方法很有意义。 1
如果使用硬件任务切换进入v8086模式,则需要GDT中的TSS结构和TSS条目。 GDT中的TSS条目用于指定包含TSS的分段的基础和限制。 GDT条目通常定义为:
最初标记为可用的32位TSS descriptor的类型为0x09; S
位(系统段)设置为0; P
位1; G
位设置为0(字节粒度);并将其余标志位设置为0。对于v8086任务,我们希望描述符特权级别(DPL)为0。这将导致访问字节0x89和标志字节0x00。
TSS结构本身可以遵循此相关Stackoverflow answer中建议的结构类型。对于下面的示例,我们将不使用IO端口位图,因此将TSS_IO_BITMAP_SIZE
设置为0。
一旦创建了适当的结构,即可使用v8086任务所需的寄存器状态填充TSS。这将包括 CS:IP ,其中将从v8086任务开始执行。要输入v8086任务,只需通过TSS选择器输入FAR JMP:
jmp TSS32_SEL:0 ; Transfer control to v8086 mode and our real mode code
通过TSS选择器跳转时,偏移量将被忽略。我使用0值作为偏移量,但可以将其设置为任何值。该FAR JMP将使用TSS选择器加载任务寄存器,并将任务标记为 busy ;根据TSS结构设置CPU状态;将控制权转移给任务。最小的完整示例如下:
VIDEO_TEXT_ADDR EQU 0xb8000 ; Hard code beginning of text video memory
ATTR_BWHITE_ON_GREEN EQU 0x2f ; Bright white on black attribute
ATTR_BWHITE_ON_MAGENTA EQU 0x5f ; Bright White on magenta attribute
PM_MODE_STACK EQU 0x80000 ; Protected mode stack below EBDA
V86_STACK_SEG EQU 0x0000 ; v8086 stack SS
V86_STACK_OFS EQU 0x0000 ; v8086 stack SP
V86_CS_SEG EQU 0x0000 ; v8086 code segment CS
EFLAGS_VM_BIT EQU 17 ; EFLAGS VM bit
EFLAGS_BIT1 EQU 1 ; EFLAGS bit 1 (reserved, always 1)
EFLAGS_IF_BIT EQU 9 ; EFLAGS IF bit
TSS_IO_BITMAP_SIZE EQU 0 ; Size 0 disables IO port bitmap (no permission)
; Macro to build a GDT descriptor entry
%define MAKE_GDT_DESC(base, limit, access, flags) \
(((base & 0x00FFFFFF) << 16) | \
((base & 0xFF000000) << 32) | \
(limit & 0x0000FFFF) | \
((limit & 0x00FF0000) << 32) | \
((access & 0xFF) << 40) | \
((flags & 0x0F) << 52))
bits 16
ORG 0x7c00
; Include a BPB (1.44MB floppy with FAT12) to be more compatible with USB floppy media
; %include "bpb.inc"
boot_start:
xor ax, ax ; DS=SS=ES=0
mov ds, ax
mov ss, ax ; Stack at 0x0000:0x7c00
mov sp, 0x7c00
cld ; Set string instructions to use forward movement
; Fast method of enabling A20 may not work on all x86 BIOSes
; It is good enough for emulators and most modern BIOSes
; See: https://wiki.osdev.org/A20_Line
cli ; Disable interrupts for rest of code as we don't
; want A20 code to be interrupted. In protected mode
; we have no IDT so any interrupt that does occur will
; double fault and reboot.
in al, 0x92
or al, 2
out 0x92, al ; Enable A20 using Fast Method
lgdt [gdtr] ; Load our GDT
mov eax, cr0
or eax, 1
mov cr0, eax ; Set protected mode flag
jmp CODE32_SEL:start32 ; FAR JMP to set CS
; v8086 code entry point
v86_mode_entry:
sub dword [vidmem_ptr], VIDEO_TEXT_ADDR
; Adjust video pointer to be relative to beginning of
; segment 0xb800
mov si, in_v86_msg ; Print in v86 message
mov ah, ATTR_BWHITE_ON_MAGENTA
; Attribute to print with
call print_string_rm_nobios
.endloop:
jmp $ ; Infinite loop since we did code a solution to exit VM
; Function: print_string_rm_nobios
; Display a string to the console on display page 0 in real/v8086 mode
; without using the BIOS. We don't have a proper v8086 monitor so can't
; use BIOS to display.
;
; Very basic. Doesn't update hardware cursor, doesn't handle scrolling,
; LF, CR, TAB.
;
; Inputs: SI = Offset of address to print
; AH = Attribute of string to print
; Clobbers: None
; Returns: None
print_string_rm_nobios:
push di
push si
push ax
push es
mov di, VIDEO_TEXT_ADDR>>4 ; ES=0xb800 (text video mode segment)
mov es, di
mov di, [vidmem_ptr] ; Start from video address stored at vidmem_ptr
jmp .getchar
.outchar:
stosw ; Output character to display
.getchar:
lodsb ; Load next character from string
test al, al ; Is character NUL?
jne .outchar ; If not, go output character
mov [vidmem_ptr], di ; Update global video pointer
pop es
pop ax
pop si
pop di
ret
; 32-bit protected mode entry point
bits 32
start32:
mov ax, DATA32_SEL ; Setup the segment registers with data selector
mov ds, ax
mov es, ax
mov ss, ax
mov esp, PM_MODE_STACK ; Set protected mode stack pointer
mov fs, ax ; Not currently using FS and GS
mov gs, ax
mov ah, ATTR_BWHITE_ON_GREEN; Attribute to print with
mov al, ah ; Attribute to clear last line when scrolling
mov esi, in_pm_msg ; Print message that we are in protected mode
call print_string_pm
mov ecx, TSS_SIZE ; Zero out entire TSS structure
mov edi, tss_entry
xor eax, eax
rep stosb
; v8086 stack SS:SP (grows down from SS:SP)
mov dword [tss_entry.ss], V86_STACK_SEG
mov dword [tss_entry.esp], V86_STACK_OFS
mov dword [tss_entry.eflags], 1<<EFLAGS_VM_BIT | 1<<EFLAGS_BIT1
; Set VM Bit, IF bit is off, DF=0(forward direction),
; IOPL=0, Reserved bit (bit 1) always 1. Everything
; else 0. We don't want interrupts enabled upon entry to
; v8086 because we have no v8086 monitor (a protected mode
; GPF handler)
; Set Real Mode CS:EIP to start execution at
mov dword [tss_entry.cs], V86_CS_SEG
mov dword [tss_entry.eip], v86_mode_entry
; Set iomap_base in tss with the offset of the iomap relative to beginning of the tss
mov word [tss_entry.iomap_base], tss_entry.iomap-tss_entry
%if TSS_IO_BITMAP_SIZE > 0
; If using an IO Bitmap then a padding byte has to be set to 0xff at end of bitmap
mov byte [tss_entry.iomap_pad], 0xff
%endif
jmp TSS32_SEL:0 ; Transfer control to v8086 mode and our real mode code
; Function: print_string_pm
; Display a string to the console on display page 0 in protected mode.
; Very basic. Doesn't update hardware cursor, doesn't handle scrolling,
; LF, CR, TAB.
;
; Inputs: ESI = Offset of address to print
; AH = Attribute of string to print
; Clobbers: None
; Returns: None
print_string_pm:
push edi
push esi
push eax
mov edi, [vidmem_ptr] ; Start from video address stored at vidmem_ptr
jmp .getchar
.outchar:
stosw ; Output character to video display
.getchar:
lodsb ; Load next character from string
test al, al ; Is character NUL?
jne .outchar ; If not, go back and output character
mov [vidmem_ptr], edi ; Update global video pointer
pop eax
pop esi
pop edi
ret
align 4
vidmem_ptr: dd VIDEO_TEXT_ADDR ; Start console output in upper left of display
in_pm_msg:
db "In 32-bit protected mode!", 0
in_v86_msg:
db "In v8086 mode!", 0
align 4
gdt_start:
dq MAKE_GDT_DESC(0, 0, 0, 0) ; null descriptor
gdt32_code:
dq MAKE_GDT_DESC(0, 0x00ffffff, 10011010b, 11001111b)
; 32-bit code, 4kb gran, limit 0xffffffff bytes, base=0
gdt32_data:
dq MAKE_GDT_DESC(0, 0x00ffffff, 10010010b, 11001111b)
; 32-bit data, 4kb gran, limit 0xffffffff bytes, base=0
gdt32_tss:
dq MAKE_GDT_DESC(tss_entry, TSS_SIZE-1, 10001001b, 00000000b)
; 32-bit TSS, 1b gran, available, IOPL=0
end_of_gdt:
CODE32_SEL equ gdt32_code - gdt_start
DATA32_SEL equ gdt32_data - gdt_start
TSS32_SEL equ gdt32_tss - gdt_start
gdtr:
dw end_of_gdt - gdt_start - 1
; limit (Size of GDT - 1)
dd gdt_start ; base of GDT
; Pad boot sector to 510 bytes and add 2 byte boot signature
TIMES 510-($-$$) db 0
dw 0xaa55
; Data section above bootloader @ 0x7c00. Acts like a BSS section
ABSOLUTE 0x7e00
; Store the TSS just beyond the boot signature read into memory
; at 0x0000:0x7e00
tss_entry:
.back_link: resd 1
.esp0: resd 1 ; Kernel stack pointer used on ring transitions
.ss0: resd 1 ; Kernel stack segment used on ring transitions
.esp1: resd 1
.ss1: resd 1
.esp2: resd 1
.ss2: resd 1
.cr3: resd 1
.eip: resd 1
.eflags: resd 1
.eax: resd 1
.ecx: resd 1
.edx: resd 1
.ebx: resd 1
.esp: resd 1
.ebp: resd 1
.esi: resd 1
.edi: resd 1
.es: resd 1
.cs: resd 1
.ss: resd 1
.ds: resd 1
.fs: resd 1
.gs: resd 1
.ldt: resd 1
.trap: resw 1
.iomap_base:resw 1 ; IOPB offset
;.cetssp: resd 1 ; Need this if CET is enabled
; Insert any kernel defined task instance data here
; ...
; If using VME (Virtual Mode extensions) there need to bean additional 32 bytes
; available immediately preceding iomap. If using VME uncomment next 2 lines
;.vmeintmap: ; If VME enabled uncomment this line and the next
; resb 32 ; 32*8 bits = 256 bits (one bit for each interrupt)
.iomap: resb TSS_IO_BITMAP_SIZE ; IO bitmap (IOPB) size 8192 (8*8192=65536) representing
; all ports. An IO bitmap size of 0 would fault all IO
; port access if IOPL < CPL (CPL=3 with v8086)
%if TSS_IO_BITMAP_SIZE > 0
.iomap_pad: resb 1 ; Padding byte that has to be filled with 0xff
; To deal with issues on some CPUs when using an IOPB
%endif
TSS_SIZE EQU $-tss_entry
注释
答案 1 :(得分:1)
该答案必须与第一个答案分开,因为超出了发布限制。
此方法实际上与方法#1 相同。使用IRET进入v8086模式,但是我们像 Method#2 一样在GDT中创建了一个TSS结构和一个32位TSS条目。在没有硬件任务切换的情况下创建TSS,使我们可以在运行IOPL 当中断/调用/陷阱门将控制从CPL = 1,2,3转移到CPL = 0时,CPU将使用 以下最小的完整示例演示了此概念。对于此示例,将IOPB设置为允许端口访问前0x400端口,其余端口拒绝该端口:.esp0
和.ss0
字段作为内核堆栈。在没有TSS的情况下以CPL> 0运行代码时,无法处理中断。 LTR
指令用于指定初始TSS,而无需执行实际的任务切换。 LTR 将TSS标记为忙。VIDEO_TEXT_ADDR EQU 0xb8000 ; Hard code beginning of text video memory
ATTR_BWHITE_ON_GREEN EQU 0x2f ; Bright white on black attribute
ATTR_BWHITE_ON_MAGENTA EQU 0x5f ; Bright White on magenta attribute
PM_MODE_STACK EQU 0x80000 ; Protected mode stack below EBDA
V86_STACK_SEG EQU 0x0000 ; v8086 stack SS
V86_STACK_OFS EQU 0x0000 ; v8086 stack SP
V86_CS_SEG EQU 0x0000 ; v8086 code segment CS
EFLAGS_VM_BIT EQU 17 ; EFLAGS VM bit
EFLAGS_BIT1 EQU 1 ; EFLAGS bit 1 (reserved, always 1)
EFLAGS_IF_BIT EQU 9 ; EFLAGS IF bit
TSS_IO_BITMAP_SIZE EQU 0x400/8 ; IO Bitmap for 0x400 IO ports
; Size 0 disables IO port bitmap (no permission)
; Macro to build a GDT descriptor entry
%define MAKE_GDT_DESC(base, limit, access, flags) \
(((base & 0x00FFFFFF) << 16) | \
((base & 0xFF000000) << 32) | \
(limit & 0x0000FFFF) | \
((limit & 0x00FF0000) << 32) | \
((access & 0xFF) << 40) | \
((flags & 0x0F) << 52))
bits 16
ORG 0x7c00
; Include a BPB (1.44MB floppy with FAT12) to be more compatible with USB floppy media
; %include "bpb.inc"
boot_start:
xor ax, ax ; DS=SS=ES=0
mov ds, ax
mov ss, ax ; Stack at 0x0000:0x7c00
mov sp, 0x7c00
cld ; Set string instructions to use forward movement
; Fast method of enabling A20 may not work on all x86 BIOSes
; It is good enough for emulators and most modern BIOSes
; See: https://wiki.osdev.org/A20_Line
cli ; Disable interrupts for rest of code as we don't
; want A20 code to be interrupted. In protected mode
; we have no IDT so any interrupt that does occur will
; double fault and reboot.
in al, 0x92
or al, 2
out 0x92, al ; Enable A20 using Fast Method
lgdt [gdtr] ; Load our GDT
mov eax, cr0
or eax, 1
mov cr0, eax ; Set protected mode flag
jmp CODE32_SEL:start32 ; FAR JMP to set CS
; v8086 code entry point
v86_mode_entry:
sub dword [vidmem_ptr], VIDEO_TEXT_ADDR
; Adjust video pointer to be relative to beginning of
; segment 0xb800
mov si, in_v86_msg ; Print in v86 message
mov ah, ATTR_BWHITE_ON_MAGENTA
; Attribute to print with
call print_string_rm_nobios
.endloop:
jmp $ ; Infinite loop since we did code a solution to exit VM
; Function: print_string_rm_nobios
; Display a string to the console on display page 0 in real/v8086 mode
; without using the BIOS. We don't have a proper v8086 monitor so can't
; use BIOS to display.
;
; Very basic. Doesn't update hardware cursor, doesn't handle scrolling,
; LF, CR, TAB.
;
; Inputs: SI = Offset of address to print
; AH = Attribute of string to print
; Clobbers: None
; Returns: None
print_string_rm_nobios:
push di
push si
push ax
push es
mov di, VIDEO_TEXT_ADDR>>4 ; ES=0xb800 (text video mode segment)
mov es, di
mov di, [vidmem_ptr] ; Start from video address stored at vidmem_ptr
jmp .getchar
.outchar:
stosw ; Output character to display
.getchar:
lodsb ; Load next character from string
test al, al ; Is character NUL?
jne .outchar ; If not, go output character
mov [vidmem_ptr], di ; Update global video pointer
pop es
pop ax
pop si
pop di
ret
; 32-bit protected mode entry point
bits 32
start32:
mov ax, DATA32_SEL ; Setup the segment registers with data selector
mov ds, ax
mov es, ax
mov ss, ax
mov esp, PM_MODE_STACK ; Set protected mode stack pointer
mov fs, ax ; Not currently using FS and GS
mov gs, ax
mov ah, ATTR_BWHITE_ON_GREEN; Attribute to print with
mov al, ah ; Attribute to clear last line when scrolling
mov esi, in_pm_msg ; Print message that we are in protected mode
call print_string_pm
mov ecx, TSS_SIZE ; Zero out entire TSS structure
mov edi, tss_entry
xor eax, eax
rep stosb
; Set iomap_base in tss with the offset of the iomap relative to beginning of the tss
mov word [tss_entry.iomap_base], tss_entry.iomap-tss_entry
mov eax, TSS32_SEL
ltr ax ; Load default TSS (used for exceptions, interrupts, etc)
xor ebx, ebx ; EBX=0
push ebx ; Real mode GS=0
push ebx ; Real mode FS=0
push ebx ; Real mode DS=0
push ebx ; Real mode ES=0
push V86_STACK_SEG
push V86_STACK_OFS ; v8086 stack SS:SP (grows down from SS:SP)
push dword 1<<EFLAGS_VM_BIT | 1<<EFLAGS_BIT1
; Set VM Bit, IF bit is off, DF=0(forward direction),
; IOPL=0, Reserved bit (bit 1) always 1. Everything
; else 0. These flags will be loaded in the v8086 mode
; during the IRET. We don't want interrupts enabled
; because we have no v86 monitor via protected mode
; GPF handler
push V86_CS_SEG ; Real Mode CS (segment)
push v86_mode_entry ; Entry point (offset)
iret ; Transfer control to v8086 mode and our real mode code
; Function: print_string_pm
; Display a string to the console on display page 0 in protected mode.
; Very basic. Doesn't update hardware cursor, doesn't handle scrolling,
; LF, CR, TAB.
;
; Inputs: ESI = Offset of address to print
; AH = Attribute of string to print
; Clobbers: None
; Returns: None
print_string_pm:
push edi
push esi
push eax
mov edi, [vidmem_ptr] ; Start from video address stored at vidmem_ptr
jmp .getchar
.outchar:
stosw ; Output character to video display
.getchar:
lodsb ; Load next character from string
test al, al ; Is character NUL?
jne .outchar ; If not, go back and output character
mov [vidmem_ptr], edi ; Update global video pointer
pop eax
pop esi
pop edi
ret
align 4
vidmem_ptr: dd VIDEO_TEXT_ADDR ; Start console output in upper left of display
in_pm_msg:
db "In 32-bit protected mode!", 0
in_v86_msg:
db "In v8086 mode!", 0
align 4
gdt_start:
dq MAKE_GDT_DESC(0, 0, 0, 0) ; null descriptor
gdt32_code:
dq MAKE_GDT_DESC(0, 0x00ffffff, 10011010b, 11001111b)
; 32-bit code, 4kb gran, limit 0xffffffff bytes, base=0
gdt32_data:
dq MAKE_GDT_DESC(0, 0x00ffffff, 10010010b, 11001111b)
; 32-bit data, 4kb gran, limit 0xffffffff bytes, base=0
gdt32_tss:
dq MAKE_GDT_DESC(tss_entry, TSS_SIZE-1, 10001001b, 00000000b)
; 32-bit TSS, 1b gran, available, IOPL=0
end_of_gdt:
CODE32_SEL equ gdt32_code - gdt_start
DATA32_SEL equ gdt32_data - gdt_start
TSS32_SEL equ gdt32_tss - gdt_start
gdtr:
dw end_of_gdt - gdt_start - 1
; limit (Size of GDT - 1)
dd gdt_start ; base of GDT
; Pad boot sector to 510 bytes and add 2 byte boot signature
TIMES 510-($-$$) db 0
dw 0xaa55
; Data section above bootloader @ 0x7c00. Acts like a BSS section
ABSOLUTE 0x7e00
; Store the TSS just beyond the boot signature read into memory
; at 0x0000:0x7e00
tss_entry:
.back_link: resd 1
.esp0: resd 1 ; Kernel stack pointer used on ring transitions
.ss0: resd 1 ; Kernel stack segment used on ring transitions
.esp1: resd 1
.ss1: resd 1
.esp2: resd 1
.ss2: resd 1
.cr3: resd 1
.eip: resd 1
.eflags: resd 1
.eax: resd 1
.ecx: resd 1
.edx: resd 1
.ebx: resd 1
.esp: resd 1
.ebp: resd 1
.esi: resd 1
.edi: resd 1
.es: resd 1
.cs: resd 1
.ss: resd 1
.ds: resd 1
.fs: resd 1
.gs: resd 1
.ldt: resd 1
.trap: resw 1
.iomap_base:resw 1 ; IOPB offset
;.cetssp: resd 1 ; Need this if CET is enabled
; Insert any kernel defined task instance data here
; ...
; If using VME (Virtual Mode extensions) there need to bean additional 32 bytes
; available immediately preceding iomap. If using VME uncomment next 2 lines
;.vmeintmap: ; If VME enabled uncomment this line and the next
; resb 32 ; 32*8 bits = 256 bits (one bit for each interrupt)
.iomap: resb TSS_IO_BITMAP_SIZE ; IO bitmap (IOPB) size 8192 (8*8192=65536) representing
; all ports. An IO bitmap size of 0 would fault all IO
; port access if IOPL < CPL (CPL=3 with v8086)
%if TSS_IO_BITMAP_SIZE > 0
.iomap_pad: resb 1 ; Padding byte that has to be filled with 0xff
; To deal with issues on some CPUs when using an IOPB
%endif
TSS_SIZE EQU $-tss_entry