我正在尝试使用Pandas加载SQuAD数据集。我的数据集中的JSON元素的结构如下,其中所有以“ s”结尾的内容都代表一个列表:
-data
-- title
-- paragraphs
-- context
--- qas
---- id
---- question
----- answers
------ answerStart
------ answerText
我想创建一个看起来像这样的DataFrame:
问题标题上下文answerText
但是,我只希望每个问题一个“ answerText”值,所以每个“ qas”字段仅一个答案。由于“ qas”具有每对唯一的ID,因此最好创建一个“ answers”数据框,然后再创建一个如下所示的数据框:
qas_id answer_id
但是,我不太确定如何最好地设置此架构。这是我尝试过的:
with open(filename) as file:
data = json.load(file)["data"]
questions = pd.io.json.json_normalize(data,record_path=["paragraphs","qas","question"],meta=["paragraphs","qas","id"])
answers = pd.io.json.json_normalize(data,record_path=["paragraphs","qas","answers"],meta=["paragraphs","qas","id"])
既然meta显然只允许访问top元素的子元素,那么如何创建同时包含“ qas”的“ id”元素和答案的“ answerStart”和“ answerText”元素的数据框?
答案 0 :(得分:0)
我相信我有一个可行的解决方案:
import json
import re
import string
import pandas as pd
def readFile(filename):
with open(filename) as file:
data = json.load(file)["data"]
qas = pd.io.json.json_normalize(data,record_path=["paragraphs","qas"],meta=["title"])
#print(qas["question"])
#Gather a list of where all answers should be so we can shove them into a DataFrame.
# Haven't found a more efficient way to do this yet.
answer_ids = set()
answerId = 0
for index,row in qas.iterrows():
answer_ids.add(answerId)
answerId = answerId + len(row["answers"])
print("Finished with answer ids.")
# Map qas pair IDs to answer IDs.
answer_ids = pd.DataFrame(list(answer_ids))
print("Finished converting answer_ids to DataFrame.")
question_answerId = pd.DataFrame(qas["question"]).join(answer_ids,how="outer")
question_answerId.columns = ["question","answer_id"]
#print("Id-answerID columns: ",id_answerId.columns)
print("finished creating intermediary table.")
# Load answers into a data frame.
answers = pd.io.json.json_normalize(data,record_path=["paragraphs","qas","answers"])
answers.rename(columns={"text":"answer_text"},inplace=True)
# Give each answer an ID.
answers["id"] = answers.index
print("Finished creating answers dataframe.")
qas = qas.drop(labels=["answers"],axis=1) # Not needed any longer; we have the answers!
#print("Dropped column 'answers' from qas.")
# Map qas dataframe to answer table via id_answerId
qas_answerId = pd.merge(qas,question_answerId,how="inner",on="question")
# Check that no duplicates exist in qas_answerId
qas_answerId = qas_answerId.drop_duplicates("question")
assert qas_answerId.duplicated("question").any() == False
print("Finished joining qas to answer id")
# Merge qas_answerId with answers.
returnDataFrame = pd.merge(qas_answerId,answers,how="inner",left_on="answer_id",right_on="id")
#print("Returned data frame: ",returnDataFrame)
print("Done!")
return returnDataFrame