我对Airflow很陌生。我已经阅读了几次文档,在网上遇到了许多S / O问题和许多随机文章,但尚未解决此问题。我觉得这很简单,我做错了。
我有适用于Windows的Docker,我拉了puckel/docker-airflow
图像并运行了一个带有暴露端口的容器,以便可以从主机访问UI。我有另一个运行mcr.microsoft.com/mssql/server
的容器,在该容器上还原了WideWorldImporters示例数据库。通过Airflow UI,我已经能够成功创建与此数据库的连接,甚至可以从“数据分析”部分中查询它。查看以下图像:
Connection Creation
Successful Query to Connection
因此,尽管可行,但我的任务在第二个任务sqlData
上失败了。这是代码:
from airflow.models import DAG
from airflow.operators.bash_operator import BashOperator
from airflow.operators.python_operator import PythonOperator
from airflow.operators.mssql_operator import MsSqlOperator
from datetime import timedelta, datetime
copyData = DAG(
dag_id='copyData',
schedule_interval='@once',
start_date=datetime(2019,1,1)
)
printHelloBash = BashOperator(
task_id = "print_hello_Bash",
bash_command = 'echo "Lets copy some data"',
dag = copyData
)
mssqlConnection = "WWI"
sqlData = MsSqlOperator(sql="select top 100 InvoiceDate, TotalDryItems from sales.invoices",
task_id="select_some_data",
mssql_conn_id=mssqlConnection,
database="WideWorldImporters",
dag = copyData,
depends_on_past=True
)
queryDataSuccess = BashOperator(
task_id = "confirm_data_queried",
bash_command = 'echo "We queried data!"',
dag = copyData
)
printHelloBash >> sqlData >> queryDataSuccess
最初的错误是:
*[2019-02-22 16:13:09,176] {{logging_mixin.py:95}} INFO - [2019-02-22 16:13:09,176] {{base_hook.py:83}} INFO - Using connection to: 172.17.0.3
[2019-02-22 16:13:09,186] {{models.py:1760}} ERROR - Could not create Fernet object: Incorrect padding
Traceback (most recent call last):
File "/usr/local/lib/python3.6/site-packages/airflow/models.py", line 171, in get_fernet
_fernet = Fernet(fernet_key.encode('utf-8'))
File "/usr/local/lib/python3.6/site-packages/cryptography/fernet.py", line 34, in __init__
key = base64.urlsafe_b64decode(key)
File "/usr/local/lib/python3.6/base64.py", line 133, in urlsafe_b64decode
return b64decode(s)
File "/usr/local/lib/python3.6/base64.py", line 87, in b64decode
return binascii.a2b_base64(s)
binascii.Error: Incorrect padding*
我注意到这与加密有关,因此我继续运行pip install cryptography
和pip install airflow[crytpo]
,两者都返回了完全相同的结果,通知我该要求已经满足。终于,我发现一些东西说我只需要生成一个fernet_key。我的airflow.cfg文件中的默认密钥为fernet_key = $FERNET_KEY
。因此,从容器中的cli运行:
python -c "from cryptography.fernet import Fernet; print(Fernet.generate_key().decode())"
并得到了我替换为$FERNET_KEY
的代码。我重新启动了容器,然后重新运行了dag,现在我的错误是:
[2019-02-22 16:22:13,641] {{models.py:1760}} ERROR -
Traceback (most recent call last):
File "/usr/local/lib/python3.6/site-packages/cryptography/fernet.py", line 106, in _verify_signature
h.verify(data[-32:])
File "/usr/local/lib/python3.6/site-packages/cryptography/hazmat/primitives/hmac.py", line 69, in verify
ctx.verify(signature)
File "/usr/local/lib/python3.6/site-packages/cryptography/hazmat/backends/openssl/hmac.py", line 73, in verify
raise InvalidSignature("Signature did not match digest.")
cryptography.exceptions.InvalidSignature: Signature did not match digest.
最初的加密doc扫描中的哪些与兼容性有关?
我现在很茫然,因此决定问这个问题,看看我是否有可能在解决这个问题上走错了路。任何帮助将不胜感激,因为Airflow看起来很棒。
答案 0 :(得分:2)
感谢@Tomasz的一些侧面交流,我终于让我的DAG可以工作了。他建议我尝试使用docker-compose,该工具也在puckel / docker-airflow github存储库中列出。我最终使用了docker-compose-LocalExecutor.yml文件而不是Celery Executor。我进行了一些小的故障排除和更多的配置。首先,我将现有的装有示例数据库的MSSQL容器放入其中,并使用docker commit mssql_container_name
将其转换为映像。我这样做的唯一原因是节省了必须还原备份样本数据库的时间。您始终可以将备份复制到容器中,并在以后根据需要还原它们。然后,将新映像添加到现有的docker-compose-LocalExecutor.yml文件中,如下所示:
version: '2.1'
services:
postgres:
image: postgres:9.6
environment:
- POSTGRES_USER=airflow
- POSTGRES_PASSWORD=airflow
- POSTGRES_DB=airflow
mssql:
image: dw:latest
ports:
- "1433:1433"
webserver:
image: puckel/docker-airflow:1.10.2
restart: always
depends_on:
- postgres
- mssql
environment:
- LOAD_EX=n
- EXECUTOR=Local
#volumes:
#- ./dags:/usr/local/airflow/dags
# Uncomment to include custom plugins
# - ./plugins:/usr/local/airflow/plugins
ports:
- "8080:8080"
command: webserver
healthcheck:
test: ["CMD-SHELL", "[ -f /usr/local/airflow/airflow-webserver.pid ]"]
interval: 30s
timeout: 30s
retries: 3
请记住, dw 是我命名的基于mssql容器的新映像的名称。接下来,我将文件重命名为 docker-compose.yml ,以便可以轻松运行docker-compose up
(不确定是否有直接指向其他YAML文件的命令)。一切启动并运行后,我导航至Airflow UI并配置了连接。注意:由于您使用的是docker-compose,因此您无需知道其他容器的IP地址,因为它们使用了DNS服务发现,而我发现了这些信息 here。然后,为了测试连接,我去了Data Profiling进行了临时查询,但是没有连接。这是因为puckel / docker-airflow映像未安装 pymssql 。因此,只需将bash放入容器docker exec -it airflow_webserver_container bash
中并安装pip install pymssql --user
。退出容器,然后使用docker-compose restart
重新启动所有服务。一分钟后,一切正常。我的连接显示在临时查询中,可以成功选择数据。最终,我打开了DAG,调度程序将其选中,一切都成功了!经过数周的谷歌搜索,超级放心。感谢@ y2k-shubham的帮助和对@Tomasz的超级感谢,我在他关于r / datascience subreddit上关于Airflow的精彩而透彻的发布之后,实际上是我最初接触到的。