计算Numba中的numpy数组中非零值的数量

时间:2019-02-22 15:21:15

标签: python numpy numba

非常简单。我试图用Numba(njit())编译的NumPy jit中计算数组中非零值的数量。 Numba禁止我尝试以下内容。

  1. a[a != 0].size
  2. np.count_nonzero(a)
  3. len(a[a != 0])
  4. len(a) - len(a[a == 0])

如果仍然有一种更快,更pythonic和优雅的方式,我不想使用循环。

对于想要查看完整代码示例的评论者...

import numpy as np
from numba import njit

@njit()
def n_nonzero(a):
    return a[a != 0].size

4 个答案:

答案 0 :(得分:2)

您还可以考虑计算非零值:

import numba as nb

@nb.njit()
def count_loop(a):
    s = 0
    for i in a:
        if i != 0:
            s += 1
    return s

我知道这似乎是错误的,但请忍受:

import numpy as np
import numba as nb

@nb.njit()
def count_loop(a):
    s = 0
    for i in a:
        if i != 0:
            s += 1
    return s

@nb.njit()
def count_len_nonzero(a):
    return len(np.nonzero(a)[0])

@nb.njit()
def count_sum_neq_zero(a):
    return (a != 0).sum()

np.random.seed(100)
a = np.random.randint(0, 3, 1000000000, dtype=np.uint8)
c = np.count_nonzero(a)
assert count_len_nonzero(a) == c
assert count_sum_neq_zero(a) == c
assert count_loop(a) == c

%timeit count_len_nonzero(a)
# 5.94 s ± 141 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
%timeit count_sum_neq_zero(a)
# 848 ms ± 80.3 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
%timeit count_loop(a)
# 189 ms ± 4.41 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)

实际上它比np.count_nonzero快,由于某些原因它可能变得很慢:

%timeit np.count_nonzero(a)
# 4.36 s ± 69.4 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)

答案 1 :(得分:2)

如果您真的非常需要大型数组,甚至可以使用numbas prange并行处理计数(对于小型数组,由于并行处理开销会比较慢)。

import numpy as np
from numba import njit, prange

@njit(parallel=True)
def parallel_nonzero_count(arr):
    flattened = arr.ravel()
    sum_ = 0
    for i in prange(flattened.size):
        sum_ += flattened[i] != 0
    return sum_

请注意,当您使用numba时,通常要写出循环,因为numba确实非常擅长优化。

我实际上将它与此处提到的其他解决方案(使用我的Python模块simple_benchmark)定时:

enter image description here

要复制的代码:

import numpy as np
from numba import njit, prange

@njit
def n_nonzero(a):
    return a[a != 0].size

@njit
def count_non_zero(np_arr):
    return len(np.nonzero(np_arr)[0])

@njit() 
def methodB(a): 
    return (a!=0).sum()

@njit(parallel=True)
def parallel_nonzero_count(arr):
    flattened = arr.ravel()
    sum_ = 0
    for i in prange(flattened.size):
        sum_ += flattened[i] != 0
    return sum_

@njit()
def count_loop(a):
    s = 0
    for i in a:
        if i != 0:
            s += 1
    return s

from simple_benchmark import benchmark

args = {}
for exp in range(2, 20):
    size = 2**exp
    arr = np.random.random(size)
    arr[arr < 0.3] = 0.0
    args[size] = arr

b = benchmark(
    funcs=(n_nonzero, count_non_zero, methodB, np.count_nonzero, parallel_nonzero_count, count_loop),
    arguments=args,
    argument_name='array size',
    warmups=(n_nonzero, count_non_zero, methodB, np.count_nonzero, parallel_nonzero_count, count_loop)
)

答案 2 :(得分:1)

您可以使用np.nonzero并得出其长度:

@njit
def count_non_zero(np_arr):
    return len(np.nonzero(np_arr)[0])

count_non_zero(np.array([0,1,0,1]))
# 2

答案 3 :(得分:1)

不确定我是否在这里犯了一个错误,但这似乎快了6倍:

# Make something worth checking
a=np.random.randint(0,3,1000000000,dtype=np.uint8)  

In [41]: @njit() 
    ...: def methodA(a): 
    ...:     return len(np.nonzero(a)[0])                                                                                           

# Call and check result
In [42]: methodA(a)                                                                                 
Out[42]: 666644445

In [43]: %timeit methodA(a)                                                                         
4.65 s ± 28.6 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)

In [44]: @njit() 
    ...: def methodB(a): 
    ...:     return (a!=0).sum()                                                                                         

# Call and check result    
In [45]: methodB(a)                                                                                 
Out[45]: 666644445

In [46]: %timeit methodB(a)                                                                         
724 ms ± 14 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)