我正在尝试将R代码转换为Python。 R代码使用lsoda
函数,该函数是FORTRAN DOE
求解器的包装器。 Python对应项似乎是solve_ivp
,它是FORTRAN ODEPACK
的包装。我在Python中使用method='LSODA'
,它应该是R使用的等效方法。但是,我的结果相差高达1%。我的代码中没有什么是随机的,所以我相信我应该能够完全复制结果。
有什么主意吗?!
这是R代码的一部分(之前的代码只是计算参数值:
val = c("A1" = 1, "A2" = 1, "A3" = 1, "A4" = 1, "A5" = 1, "A6" = 1, "A7" = 1)
hamberg_ode <- function(t,val,p) {
dA1 = p["ktr1"]*(1 - ((p["E_MAX"] * p["C_s_gamma"])/(p["EC_50_gamma"] + p["C_s_gamma"]))) - p["ktr1"]*val["A1"]
dA2 = p["ktr1"]*val["A1"] - p["ktr1"]*val["A2"]
dA3 = p["ktr1"]*val["A2"] - p["ktr1"]*val["A3"]
dA4 = p["ktr1"]*val["A3"] - p["ktr1"]*val["A4"]
dA5 = p["ktr1"]*val["A4"] - p["ktr1"]*val["A5"]
dA6 = p["ktr1"]*val["A5"] - p["ktr1"]*val["A6"]
dA7 = p["ktr2"]*(1 - ((p["E_MAX"] * p["C_s_gamma"])/(p["EC_50_gamma"] + p["C_s_gamma"]))) - p["ktr2"]*val["A7"]
cat(val["A1"], dA1, '\n')
list(c(dA1, dA2, dA3, dA4, dA5, dA6, dA7))
}
out = lsoda(val, times, hamberg_ode, p)
Python代码:
val = [1]*7
class hamberg_ode:
def __init__(self, p):
self.p = p
def f(self, t, val, p=None):
if p is None:
p = self.p
dA1=p["ktr1"]*(1 - ((p["E_MAX"] * p["C_s_gamma"]) /
(p["EC_50_gamma"] + p["C_s_gamma"]))) - p["ktr1"]*val[0]
dA2=p["ktr1"]*val[0] - p["ktr1"]*val[1]
dA3=p["ktr1"]*val[1] - p["ktr1"]*val[2]
dA4=p["ktr1"]*val[2] - p["ktr1"]*val[3]
dA5=p["ktr1"]*val[3] - p["ktr1"]*val[4]
dA6=p["ktr1"]*val[4] - p["ktr1"]*val[5]
dA7=p["ktr2"]*(1 - ((p["E_MAX"] * p["C_s_gamma"]) /
(p["EC_50_gamma"] + p["C_s_gamma"]))) - p["ktr2"]*val[6]
print(val[0], dA1)
return (dA1, dA2, dA3, dA4, dA5, dA6, dA7)
h_function = hamberg_ode(p).f
out = solve_ivp(h_function, (0, maxTime), val, t_eval=times, method='LSODA')
作为数字如何发散的示例,以下是两个代码的A1和dA1的几个第一值: R
1 -0.2289151
1 -0.2289151
0.9997726 -0.2287975
0.9997727 -0.2287976
0.9995454 -0.22868
0.9995455 -0.2286801
0.9901534 -0.2238221
0.9901523 -0.2238215
0.9809609 -0.2190673
0.9809587 -0.2190662
0.9719626 -0.214413
0.9719604 -0.2144119
0.9493722 -0.2027284
0.9493668 -0.2027255
0.927996 -0.1916717
0.9280039 -0.1916758
0.9078033 -0.1812272
0.9078049 -0.181228
0.8887056 -0.1713491
0.8887071 -0.1713499
Python
1.0 -0.22891514470392998
0.9868338969217406 -0.22210509138758888
0.9872255785819792 -0.22230768534978135
0.9744278526945864 -0.2156881719597506
0.9748085754105683 -0.2158850975024998
0.9069550726140441 -0.18078845812498728
0.906362742770375 -0.18048208061964116
0.8502494750308627 -0.15145797661644517
0.8491489787959607 -0.15088875442597866
0.8022897024620746 -0.1266511977015548
0.8013657199203642 -0.1261732756972218
0.7405758555885625 -0.094730242422152
0.7400188154524862 -0.09444211821383663
0.7145516960742005 -0.08126947025955095
0.7148846597052525 -0.08144169282733643
答案 0 :(得分:1)
@astoeriko指出,默认相对容差(rtol
在scipy的solve_ivp
中为1e-3,而在R的lsoda
中为1e-6。