使用python模糊部分图像的最优雅方法是什么?

时间:2019-02-22 12:05:42

标签: python scipy filtering python-imaging-library

我找到了以下答案,该答案使用PIL在本地模糊了图像: Filter part of image using PIL, python。建议的答案将裁剪图像的一部分,使其模糊,然后将其复制回原始图像。这样会在模糊的部分和原始图像之间创建清晰的边缘(请参见下面的示例)。

image

我想避免这种影响。

1 个答案:

答案 0 :(得分:3)

要避免此问题,可以使用以下过程:

  • 给出图像和蒙版(值介于0和1之间)
  • 将完整的输入图像和遮罩模糊化
  • 使用模糊的蒙版对原始图像进行加权
  • 用倒置的模糊蒙版加权模糊图像
  • 加权图像的添加

下面是使用scipy的示例代码:

import numpy as np
import matplotlib.pyplot as plt
from scipy import misc
import scipy.ndimage


def gaussian_blur(sharp_image, sigma):
    # Filter channels individually to avoid gray scale images
    blurred_image_r = scipy.ndimage.filters.gaussian_filter(sharp_image[:, :, 0], sigma=sigma)
    blurred_image_g = scipy.ndimage.filters.gaussian_filter(sharp_image[:, :, 1], sigma=sigma)
    blurred_image_b = scipy.ndimage.filters.gaussian_filter(sharp_image[:, :, 2], sigma=sigma)
    blurred_image = np.dstack((blurred_image_r, blurred_image_g, blurred_image_b))
    return blurred_image


def uniform_blur(sharp_image, uniform_filter_size):
    # The multidimensional filter is required to avoid gray scale images
    multidim_filter_size = (uniform_filter_size, uniform_filter_size, 1)
    blurred_image = scipy.ndimage.filters.uniform_filter(sharp_image, size=multidim_filter_size)
    return blurred_image


def blur_image_locally(sharp_image, mask, use_gaussian_blur, gaussian_sigma, uniform_filter_size):

    one_values_f32 = np.full(sharp_image.shape, fill_value=1.0, dtype=np.float32)
    sharp_image_f32 = sharp_image.astype(dtype=np.float32)
    sharp_mask_f32 = mask.astype(dtype=np.float32)

    if use_gaussian_blur:
        blurred_image_f32 = gaussian_blur(sharp_image_f32, sigma=gaussian_sigma)
        blurred_mask_f32 = gaussian_blur(sharp_mask_f32, sigma=gaussian_sigma)

    else:
        blurred_image_f32 = uniform_blur(sharp_image_f32, uniform_filter_size)
        blurred_mask_f32 = uniform_blur(sharp_mask_f32, uniform_filter_size)

    blurred_mask_inverted_f32 = one_values_f32 - blurred_mask_f32
    weighted_sharp_image = np.multiply(sharp_image_f32, blurred_mask_f32)
    weighted_blurred_image = np.multiply(blurred_image_f32, blurred_mask_inverted_f32)
    locally_blurred_image_f32 = weighted_sharp_image + weighted_blurred_image

    locally_blurred_image = locally_blurred_image_f32.astype(dtype=np.uint8)

    return locally_blurred_image


if __name__ == '__main__':

    sharp_image = misc.face()
    height, width, channels = sharp_image.shape
    sharp_mask = np.full((height, width, channels), fill_value=1)
    sharp_mask[int(height / 4): int(3 * height / 4), int(width / 4): int(3 * width / 4), :] = 0

    result = blur_image_locally(
        sharp_image,
        sharp_mask,
        use_gaussian_blur=True,
        gaussian_sigma=31,
        uniform_filter_size=201)
    plt.imshow(result)
    plt.show()

结果: enter image description here