我有一个数据框(totaldf),例如:
... Hom ... March Plans March Ships April Plans April Ships ...
0 CAD ... 12 5 4 13
1 USA ... 7 6 2 11
2 CAD ... 4 9 6 14
3 CAD ... 13 3 9 7
... ... ... ... ... ... ...
一年中的所有月份。我希望是这样:
... Hom ... Month Plans Ships ...
0 CAD ... March 12 5
1 USA ... March 7 6
2 CAD ... March 4 9
3 CAD ... March 13 3
4 CAD ... April 4 13
5 USA ... April 2 11
6 CAD ... April 6 14
7 CAD ... April 9 7
... ... ... ... ... ...
是否有一种简单的方法可以在不拆分字符串条目的情况下进行此操作?
我玩过totaldf.unstack()
,但是由于有多个列,因此我不确定如何正确地重新索引数据框。
答案 0 :(得分:4)
如果将列转换为MultiIndex,则可以使用堆栈:
In [11]: df1 = df.set_index("Hom")
In [12]: df1.columns = pd.MultiIndex.from_tuples(df1.columns.map(lambda x: tuple(x.split())))
In [13]: df1
Out[13]:
March April
Plans Ships Plans Ships
Hom
CAD 12 5 4 13
USA 7 6 2 11
CAD 4 9 6 14
CAD 13 3 9 7
In [14]: df1.stack(level=0)
Out[14]:
Plans Ships
Hom
CAD April 4 13
March 12 5
USA April 2 11
March 7 6
CAD April 6 14
March 4 9
April 9 7
March 13 3
In [21]: res = df1.stack(level=0)
In [22]: res.index.names = ["Hom", "Month"]
In [23]: res.reset_index()
Out[23]:
Hom Month Plans Ships
0 CAD April 4 13
1 CAD March 12 5
2 USA April 2 11
3 USA March 7 6
4 CAD April 6 14
5 CAD March 4 9
6 CAD April 9 7
7 CAD March 13 3
答案 1 :(得分:2)
鉴于文档中所述,您可以使用pd.wide_to_long
,并做一些额外的工作以拥有正确的stubnames
。
存根名称。假定宽格式变量以存根名称开头。
因此有必要稍微修改列名称,以使存根名称位于每个列名称的开头:
m = df.columns.str.contains('Plans|Ships')
cols = df.columns[m].str.split(' ')
df.columns.values[m] = [w+month for month, w in cols]
print(df)
Hom PlansMarch ShipsMarch PlansApril ShipsApril
0 CAD 12 5 4 13
1 USA 7 6 2 11
2 CAD 4 9 6 14
3 CAD 13 3 9 7
现在,您可以使用pd.wide_to_long
和['Ships', 'Plans']
作为存根名称来获取所需的输出:
((pd.wide_to_long(df.reset_index(), stubnames=['Ships', 'Plans'], i = 'index',
j = 'Month', suffix='\w+')).reset_index(drop=True, level=0)
.reset_index())
x Month Hom Ships Plans
0 March CAD 5 12
1 March USA 6 7
2 March CAD 9 4
3 March CAD 3 13
4 April CAD 13 4
5 April USA 11 2
6 April CAD 14 6
7 April CAD 7 9