我正在对场景进行分类,但是我没有得到正确的分类,请 帮助我如何对图像进行分类。 , 我正在创建像这样的字典,我想对像这样的图像进行分类。
label_dict={'0':'buildings',
'1':'forest',
'2':'glacier',
'3':'mountain',
'4':'sea' ,
'5':'street' }
我正在建立像这样的模型
model = Sequential()
model.add(Conv2D(32, kernel_size=(3, 3),
strides=2,
activation='relu',
input_shape=(32, 32, 3)))
model.add(Dropout(0.5))
model.add(Conv2D(32, kernel_size=(3, 3), strides=2, activation='relu'))
model.add(Dropout(0.5))
model.add(Flatten())
model.add(Dense(128, activation='relu'))
model.add(Dense(10, activation='softmax'))
model.compile(loss=keras.losses.categorical_crossentropy,
optimizer='adam',
metrics=['accuracy'])
model.summary()
但是我遇到了这样的错误
ValueError Traceback (most recent call last)
<ipython-input-16-4f5a963b4f20> in <module>
1 model.fit(x_train, y_train,
2 batch_size=128,
----> 3 epochs=5 ,validation_data=(x_test, y_test))
~/anaconda3/lib/python3.7/site-packages/keras/engine/training.py in fit(self, x, y, batch_size, epochs, verbose, callbacks, validation_split, validation_data, shuffle, class_weight, sample_weight, initial_epoch, steps_per_epoch, validation_steps, **kwargs)
950 sample_weight=sample_weight,
951 class_weight=class_weight,
--> 952 batch_size=batch_size)
953 # Prepare validation data.
954 do_validation = False
~/anaconda3/lib/python3.7/site-packages/keras/engine/training.py in _standardize_user_data(self, x, y, sample_weight, class_weight, check_array_lengths, batch_size)
787 feed_output_shapes,
788 check_batch_axis=False, # Don't enforce the batch size.
--> 789 exception_prefix='target')
790
791 # Generate sample-wise weight values given the `sample_weight` and
~/anaconda3/lib/python3.7/site-packages/keras/engine/training_utils.py in standardize_input_data(data, names, shapes, check_batch_axis, exception_prefix)
136 ': expected ' + names[i] + ' to have shape ' +
137 str(shape) + ' but got array with shape ' +
--> 138 str(data_shape))
139 return data
140
ValueError: Error when checking target: expected dense_2 to have shape (10,) but got array with shape (6,)
我被应用于这些密集的第6层输入,但是我没有得到正确的分类
这些是我的JupyterNotebook链接 http://localhost:8888/notebooks/intel%20image%20classification.ipynb