我最近遇到一个有关集成的问题,遇到了一个奇怪的错误。我尝试使用solve_ivp
来解决一个非常简单的问题:
from scipy.integrate import solve_ivp
import numpy as np
def f(y, t):
return y
y0 = [1,1,1,1]
method = 'RK23'
s = solve_ivp(f, (0,1), y0, method=method, t_eval=np.linspace(0,1))
它工作正常。当我更改为method='BDF'
或method='Radau'
时收到错误消息:
Traceback (most recent call last):
File "<ipython-input-222-f11c4406e92c>", line 10, in <module>
s = solve_ivp(f, (0,1), y0, method=method, t_eval=np.linspace(0,1))
File "C:\ProgramData\Anaconda3\lib\site-packages\scipy\integrate\_ivp\ivp.py", line 455, in solve_ivp
solver = method(fun, t0, y0, tf, vectorized=vectorized, **options)
File "C:\ProgramData\Anaconda3\lib\site-packages\scipy\integrate\_ivp\radau.py", line 299, in __init__
self.jac, self.J = self._validate_jac(jac, jac_sparsity)
File "C:\ProgramData\Anaconda3\lib\site-packages\scipy\integrate\_ivp\radau.py", line 345, in _validate_jac
J = jac_wrapped(t0, y0, self.f)
File "C:\ProgramData\Anaconda3\lib\site-packages\scipy\integrate\_ivp\radau.py", line 343, in jac_wrapped
sparsity)
File "C:\ProgramData\Anaconda3\lib\site-packages\scipy\integrate\_ivp\common.py", line 307, in num_jac
return _dense_num_jac(fun, t, y, f, h, factor, y_scale)
File "C:\ProgramData\Anaconda3\lib\site-packages\scipy\integrate\_ivp\common.py", line 318, in _dense_num_jac
diff = f_new - f[:, None]
IndexError: too many indices for array
我也遇到method = 'LSODA'
错误,尽管有所不同(即所有隐式积分器)。任何明确的集成商都没有出现错误。
我在scipy版本1.0.0和google colab(scipy版本1.1.0)的spyder中进行了尝试,结果相同。
这是一个错误还是我缺少一些隐式积分器需要的参数?
答案 0 :(得分:0)
似乎Radau和BDF方法不处理单值RHS函数。使上面的函数git status
输出一维列表可以解决您的问题。此外,如Weckesser在评论中所述,f
期望RHS为solve_ivp
,而不是f(t, y)
。
赞
f(y, t)