我目前正在使用YOLOv3对象检测器开发用于板检测的深度学习模型,我在1470张图像上使用了VGG图像注释器,并以JSON和CSV格式导出了它们: VGG annotation in JSON format
如您所见,我使用了多边形和矩形,因为某些板的形状很尴尬,我尝试将它们转换为YOLOv3格式的注释,但是这样做很麻烦。
任何帮助将不胜感激。
答案 0 :(得分:1)
我知道的Yolo v3的注释格式为
[classID, x_center, y_center, w, h]
,除了classID是一个整数外,其余所有四个数字都是分别由image_height (H)
和image_width (W)
归一化的0和1之间的实数。因此,要获得[x_min, y_min, x_max, y_max]
,需要
[x_0, y_0, x_1, y_1] = [x_center - w/2, y_center - h/2, x_center + w/2, y_center + h/2]
[x_min, y_min, x_max, y_max] = [x_0, y_0, x_1, y_1] \dot_product [W H W H]
答案 1 :(得分:0)
以下 Python 脚本允许您将 JSON VGG 文件注释转换为 YOLOv3 注释格式。
from PIL import Image
from os import path, makedirs
import os
import re
import pandas as pd
import sys
import argparse
def get_parent_dir(n=1):
"""returns the n-th parent dicrectory of the current
working directory"""
current_path = os.path.dirname(os.path.abspath(__file__))
for k in range(n):
current_path = os.path.dirname(current_path)
return current_path
sys.path.append(os.path.join(get_parent_dir(1), "Utils"))
from Convert_Format import convert_vott_csv_to_yolo
Data_Folder = os.path.join(get_parent_dir(1), "Data")
VoTT_Folder = os.path.join(
Data_Folder, "Source_Images", "Training_Images", "vott-csv-export"
)
VoTT_csv = os.path.join(VoTT_Folder, "Annotations-export.csv")
YOLO_filename = os.path.join(VoTT_Folder, "data_train.txt")
model_folder = os.path.join(Data_Folder, "Model_Weights")
classes_filename = os.path.join(model_folder, "data_classes.txt")
if __name__ == "__main__":
# surpress any inhereted default values
parser = argparse.ArgumentParser(argument_default=argparse.SUPPRESS)
"""
Command line options
"""
parser.add_argument(
"--VoTT_Folder",
type=str,
default=VoTT_Folder,
help="Absolute path to the exported files from the image tagging step with VoTT. Default is "
+ VoTT_Folder,
)
parser.add_argument(
"--VoTT_csv",
type=str,
default=VoTT_csv,
help="Absolute path to the *.csv file exported from VoTT. Default is "
+ VoTT_csv,
)
parser.add_argument(
"--YOLO_filename",
type=str,
default=YOLO_filename,
help="Absolute path to the file where the annotations in YOLO format should be saved. Default is "
+ YOLO_filename,
)
FLAGS = parser.parse_args()
# Prepare the dataset for YOLO
multi_df = pd.read_csv(FLAGS.VoTT_csv)
labels = multi_df["label"].unique()
labeldict = dict(zip(labels, range(len(labels))))
multi_df.drop_duplicates(subset=None, keep="first", inplace=True)
train_path = FLAGS.VoTT_Folder
convert_vott_csv_to_yolo(
multi_df, labeldict, path=train_path, target_name=FLAGS.YOLO_filename
)
# Make classes file
file = open(classes_filename, "w")
# Sort Dict by Values
SortedLabelDict = sorted(labeldict.items(), key=lambda x: x[1])
for elem in SortedLabelDict:
file.write(elem[0] + "\n")
file.close()