首先,我已经成功地将数据从长格式转换为宽格式。 数据如下。
+======+==========+======+======+
| Name | Date | Val1 | Val2 |
+======+==========+======+======+
| A | 1/1/2018 | 1 | 2 |
+------+----------+------+------+
| B | 1/1/2018 | 2 | 3 |
+------+----------+------+------+
| C | 1/1/2018 | 3 | 4 |
+------+----------+------+------+
| D | 1/4/2018 | 4 | 5 |
+------+----------+------+------+
| A | 1/4/2018 | 5 | 6 |
+------+----------+------+------+
| B | 1/4/2018 | 6 | 7 |
+------+----------+------+------+
| C | 1/4/2018 | 7 | 8 |
+------+----------+------+------+
要将上表从长格式转换为宽格式,我使用了以下代码行:
test_wide <- reshape(test_data, idvar = 'Name', timevar = 'Date', direction = "wide" )
以上代码的结果如下:
+======+===============+===============+===============+===============+
| Name | Val1.1/1/2018 | Val2.1/1/2018 | Val1.1/4/2018 | Val2.1/4/2018 |
+======+===============+===============+===============+===============+
| A | 1 | 2 | 5 | 6 |
+------+---------------+---------------+---------------+---------------+
| B | 2 | 3 | 6 | 7 |
+------+---------------+---------------+---------------+---------------+
| C | 3 | 4 | 7 | 8 |
+------+---------------+---------------+---------------+---------------+
| D | NA | NA | 4 | 5 |
+------+---------------+---------------+---------------+---------------+
我面临的问题是我需要R考虑日期格式的Date
列。日期列的范围从1/1/2018
到1/4/2018
,因为日期1/2/2018
和1/3/2018
中没有值,我看不到任何列为Val1.1/2/2018
,{{ 1}},Val2.1/3/2018
和Val3.1/2/2018
。
我想转换为宽格式,这样我就可以获得日期Val3.1/3/2018
和1/2/2018
的列,即使这些列仅包含NULL。
这样做的原因是我需要将数据用作时间序列。
编辑:
复制并粘贴的初始数据:
1/3/2018
转换后的数据副本并粘贴:
Name Date Val1 Val2
A 1/1/2018 1 2
B 1/1/2018 2 3
C 1/1/2018 3 4
D 1/4/2018 4 5
A 1/4/2018 5 6
B 1/4/2018 6 7
C 1/4/2018 7 8
", header=TRUE)
dput(test_data)结果:
Name,Val1.1/1/2018,Val2.1/1/2018,Val1.1/4/2018,Val2.1/4/2018
A,1,2,5,6
B,2,3,6,7
C,3,4,7,8
D,NA,NA,4,5
答案 0 :(得分:2)
一个tidyverse
选项
library(lubridate)
library(tidyverse)
df %>%
mutate(Date=mdy(Date)) %>%
#Or you can do as.Date(Date,'%m/%d/%Y') to avoid loading `lubridate`
complete(Name, Date = seq(min(Date), max(Date), 1)) %>%
gather(key, value, -Name, -Date) %>%
unite(Date, key, Date, sep = ".") %>%
spread(Date, value)
答案 1 :(得分:1)
library(dplyr)
library(tidyr) #complete
library(data.table) #dcast and setDT
df %>% mutate(Date=as.Date(Date,'%m/%d/%Y')) %>%
complete(Name, nesting(Date=full_seq(Date,1))) %>%
setDT(.) %>% dcast(Name ~ Date, value.var=c('Val2','Val1'))